水体中锰暴露对草鱼和鲤鱼的生态毒理学影响
本文选题:草鱼 + 鲤鱼 ; 参考:《西南大学》2017年硕士论文
【摘要】:本研究以草鱼(Ctenopharyngodon idellus)和鲤鱼(Cyprinus carpio)为实验对象,以曝气自来水为水体,在水温(27.5±0.5)℃的条件下,探讨水体中锰(Manganese)暴露对草鱼和鲤鱼氧化损伤及抗氧化能力的影响。本实验由两部分组成。第一部分为锰暴露急性毒理实验:该实验测定了水体中二价锰对草鱼和鲤鱼的96 h半致死浓度(96 h LC50)。第二部分为锰暴露亚急性毒理实验:根据急性毒理实验测定的96 h LC50,将草鱼和鲤鱼暴露于不同锰离子浓度(0、30、60、120、240 mg/L)的水体中,30 d后测定了草鱼和鲤鱼肝脏、鳃、消化道和肾脏中的总抗氧化能力(T-AOC)水平,同时测定了草鱼和鲤鱼肝脏、鳃、消化道过氧化氢酶(CAT)活性、丙二醛(MDA)含量和脑组织中乙酰胆碱酯酶(AChE)的活性,以及草鱼和鲤鱼肝脏、鳃、消化道、肾脏和脑中总蛋白(TP)的含量。主要研究结果如下:(1)在锰暴露急性毒理实验中,发现草鱼和鲤鱼的死亡率随着水体中锰浓度的增加而升高,测得二价锰对草鱼、鲤鱼96 h半致死浓度(96 h LC50)分别为541.07 mg/L和577.27 mg/L。(2)锰暴露对草鱼和鲤鱼肝脏的影响。(1)在不同锰浓度水体中暴露30 d后,在草鱼和鲤鱼的肝脏内,其丙二醛(MDA)的含量随着锰浓度的升高而升高,经过线性回归分析,得出了浓度-效应关系。在所有处理组中草鱼肝脏丙二醛(MDA)的含量均显著高于对照组(p0.05)。鲤鱼肝脏丙二醛(MDA)的含量除30 mg/L组外,其余各组肝脏丙二醛(MDA)的含量均显著高于对照组(p0.05)。(2)在不同锰浓度水体中暴露30 d后,草鱼和鲤鱼肝脏总抗氧化能力水平(T-AOC)随着浓度的增加均表现为先上升后下降的趋势。其中草鱼肝脏总抗氧化能力(T-AOC)在60 mg/L浓度组时达到最大,但与对照组无显著差异,在240 mg/L时总抗氧化能力(T-AOC)水平最低,并且显著低于60 mg/L浓度组(p0.05),但与对照组和其他浓度组均无显著差异。鲤鱼肝脏总抗氧化能力(T-AOC)在60 mg/L浓度组时达到最大并且与对照组和其他浓度组均有显著差异(p0.05)。(3)在不同锰浓度水体中暴露30 d后,草鱼和鲤鱼肝脏过氧化氢酶(CAT)活性随着浓度的增加呈现先上升后下降的趋势。其中草鱼肝脏过氧化氢酶(CAT)活性在60 mg/L浓度组时达到最大并且与对照组和其他浓度组均有显著差异(p0.05)。鲤鱼肝脏过氧化氢酶(CAT)活性在60 mg/L浓度组时达到最高,与对照组和30mg/L浓度组均无显著差异,但与其他浓度组均具有显著差异(p0.05)。(3)锰暴露对草鱼、鲤鱼腮和消化道的影响。水体中不同浓度锰暴露30 d后,草鱼、鲤鱼鳃和消化道MDA含量、T-AOC水平、CAT活性随着水体中锰暴露浓度增加的变化趋势与在草鱼、鲤鱼肝脏中的变化相似。在各处理组中,草鱼鳃MDA含量均显著高于对照组的含量(p0.05);草鱼消化道中MDA含量除了30 mg/L浓度组与对照组无显著差异外,其他浓度组与对照组均具有显著差异(p0.05)。鲤鱼鳃MDA含量上升趋势较为缓慢,除30 mg/L浓度组外,其他浓度组与对照组均具有显著差异(p0.05);鲤鱼消化道中MDA含量在各浓度组中均显著高于对照组(p0.05)。草鱼、鲤鱼鳃和消化道中T-AOC水平在60 mg/L浓度组为最高,在此处为分界线,小于此浓度为上升趋势,大于此浓度为下降趋势。草鱼、鲤鱼CAT活性变化和T-AOC水平的变化相似,在60 mg/L浓度组时活性最高,且显著高于对照组(p0.05)。(4)锰暴露对草鱼和鲤鱼脑乙酰胆碱酯酶(AChE)的影响。草鱼和鲤鱼脑组织中ACh E活性随着浓度的增加均出现下降的趋势,其中草鱼脑中AChE活性在低浓度中下降较为迅速,而在高浓度中下降较为缓慢,在240 mg/L浓度中AChE的活性与120 mg/L浓度中的活性无显著差异。在鲤鱼脑中ACh E活性下降一直较为缓慢,只有在240 mg/L浓度中AChE的活性与对照组有显著差异。通过讨论得出以下结论:(1)通过文献资料的查阅和急性实验数据分析,表明水体中锰暴露对于草鱼和鲤鱼的毒性均为中毒性。(2)草鱼和鲤鱼肝脏、鳃、消化道中MDA含量和水体中锰的浓度经过回归分析,呈现出线性关系,提示可以用MDA含量作为一项生物指标来指示水体中重金属污染物的污染程度。草鱼和鲤鱼脑组织中AChE对于水体中锰浓度较为敏感,随着浓度的升高出现下降的趋势,也可考虑作为一项生物指标来指示水体中重金属污染物的污染程度。(3)草鱼和鲤鱼各个组织中T-AOC水平波动较小,而抗氧化酶系中的酶活性波动较大,同种浓度的锰污染对于不同组织中同种酶的活性影响也不相同。(4)水体中锰暴露30 d后,草鱼和鲤鱼体内MDA含量呈现浓度-效应关系,T-AOC水平、CAT活性均出现先上升后下降的趋势,在低浓度时呈现出诱导作用,而在高浓度时抗氧化防御体系动态平衡被打破,出现抑制作用。(5)在水体中锰浓度相同暴露时间相同的条件下,草鱼肝脏、鳃、消化道氧化损伤程度大小顺序为:肝脏消化道鳃,抗氧化能力大小顺序为:鳃肝脏肾脏消化道,而鲤鱼肝脏、鳃、消化道氧化损伤程度大小顺序为:消化道肝脏鳃,抗氧化能力大小顺序为:肝脏消化道鳃肾脏。出现这种情况的原因可能是不同种鱼对于同种重金属污染物毒性的耐受性不同;同种鱼组织的特异性造成不同组织抗氧化能力的不同。
[Abstract]:In this study, grass carp (Ctenopharyngodon idellus) and carp (Cyprinus carpio) were used to study the effects of manganese (Manganese) exposure on oxidation damage and antioxidant capacity of grass carp and carp under the condition of water temperature (27.5 + 0.5). The experiment of sexual toxicology: the experiment measured the 96 h semi lethal concentration (96 h LC50) of manganese in grass carp and carp in the water body. The second part was the subacute toxicity test of manganese exposure. According to the 96 h LC50 measured by the acute toxicological test, the grass carp and carp were exposed to the water of different manganese ion concentration (0,30,60120240 mg/L), and the grass carp was measured after 30 d. The total antioxidant capacity (T-AOC) level in liver, gills, digestive tract and kidney of carp, and the activity of grass carp and carp liver, gill, digestive tract catalase (CAT), malondialdehyde (MDA) content and the activity of acetylcholinesterase (AChE) in brain tissue, and the contents of total protein (TP) in the liver of grass carp and carp, gills, digestive tract, kidney and brain. The main results are as follows: (1) in the acute toxicological experiment of manganese exposure, the mortality of grass carp and carp increased with the increase of manganese concentration in the water body, and the effects of two valence manganese on grass carp and carp 96 h semi lethal concentration (96 h LC50) were 541.07 mg/L and 577.27 mg/L. (2) exposed to the liver of grass carp and carp respectively. (1) in different manganese After exposure to 30 d in the concentration water body, the content of malondialdehyde (MDA) in the liver of grass carp and carp increased with the increase of manganese concentration. After linear regression analysis, the concentration effect relationship was obtained. In all treatment groups, the content of malondialdehyde (MDA) in the liver of grass carp was significantly higher than that of the control group (P0.05). The content of malondialdehyde (MDA) in carp liver (MDA) The content of malondialdehyde (MDA) in liver of all the other groups was significantly higher than that of the control group (P0.05). (2) after exposure to 30 d in different manganese concentrations, the total antioxidant capacity (T-AOC) of grass carp and carp increased with the increase of the concentration, and the total antioxidant capacity of grass carp liver (T-AOC) was at 60 mg/ The L concentration group reached the maximum, but had no significant difference with the control group. The total antioxidant capacity (T-AOC) level was the lowest at 240 mg/L, and was significantly lower than the 60 mg/L concentration group (P0.05), but no significant difference was found between the control group and the other concentration groups. The total antioxidant capacity of carp liver (T-AOC) reached the maximum in the 60 mg/L concentration group and was the same as that of the control group and the control group. There were significant differences in the concentration group (P0.05). (3) after exposure to 30 d in different manganese concentrations, the activity of grass carp and carp liver catalase (CAT) increased first and then decreased with the increase of concentration. The activity of grass carp liver catalase (CAT) reached the maximum in the 60 mg/ L concentration group and was with the control group and other concentration groups. There were significant differences (P0.05). The activity of carp liver catalase (CAT) reached the highest in the 60 mg/L concentration group, and there was no significant difference between the control group and the 30mg/L concentration group. (3) the effects of manganese exposure on grass carp, carp gills and digestive tract. After 30 d of manganese exposure at different concentrations in water, grass carp, carp The MDA content, T-AOC level and CAT activity of the gill and digestive tract were similar to that in the liver of grass carp and carp. In each treatment group, the MDA content of the gill of grass carp was significantly higher than that of the control group (P0.05); there was no significant difference between the MDA content in the grass carp digestive tract except the 30 mg/L concentration group and the control group. There were significant differences between the other concentration groups and the control group (P0.05). The MDA content of carp gills increased slowly. Except for 30 mg/L concentration group, the other concentration groups were significantly different from the control group (P0.05), and the MDA content in the digestive tract of carp was significantly higher than that of the control group (P0.05). Grass carp, carp gills and the T-AOC water in the digestive tract were also significantly higher than those in the control group. The 60 mg/L concentration group was the highest, where the concentration was lower than that of this concentration. The change of CAT activity in grass carp and carp was similar to that of T-AOC level, and the activity was highest in the 60 mg/L concentration group, and was significantly higher than that of the control group (P0.05). (4) manganese exposure to the acetylcholinesterase (AChE) of the brain of carp and carp. The activity of ACh E in the brain tissue of grass carp and carp decreased with the increase of concentration, in which the activity of AChE in the grass carp brain decreased rapidly in the low concentration and decreased slowly in the high concentration, and there was no significant difference between the activity of AChE and the activity of 120 mg/L in the concentration of 240 mg/L. The activity of ACh E in the brain of carp. The decrease has been relatively slow, only the activity of AChE in the 240 mg/L concentration was significantly different from that of the control group. Through the discussion, the following conclusions were obtained: (1) the toxicity of manganese exposure in water to grass carp and carp were all medium toxicity through literature review and acute experimental data. (2) the liver of grass carp and carp, gills, and MDA in the digestive tract The concentration of manganese in the volume and water body has a linear relationship with the regression analysis. It suggests that the content of MDA can be used as a biological indicator to indicate the pollution degree of heavy metals in the water body. The AChE in grass carp and carp brain tissue is more sensitive to the concentration of manganese in the water body, and can be considered as a decrease with the increase of concentration. A biological indicator to indicate the pollution degree of heavy metal pollutants in the water body. (3) the T-AOC level fluctuates slightly in the tissues of grass carp and carp, while the activity of enzymes in the antioxidant enzymes fluctuates greatly, and the manganese pollution at the same concentration has different effects on the activity of the same enzymes in different tissues. (4) after 30 d exposure to manganese in the water body, grass carp and carp The content of MDA in the body showed a concentration effect relationship, the T-AOC level, the CAT activity increased first and then decreased, and showed an induction at low concentration, while the dynamic balance of the antioxidant defense system was broken at the high concentration. (5) under the same exposure time of the manganese concentration in the water, the liver, gill, and the liver of grass carp were in the same condition. The order of oxidation damage in the liver, liver, gill and digestive tract of carp, the order of oxidative damage in the liver, gill and digestive tract of carp is the order of the liver gill of the digestive tract, the order of the antioxidant capacity of the liver, the order of the antioxidant capacity is the livers and the gill kidneys. The reasons for this situation may be different species. The tolerance of fish to the same heavy metal pollutants is different; the specificity of the same fish tissue causes different antioxidant capacity of different tissues.
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X171.5
【参考文献】
相关期刊论文 前10条
1 刘燕;梁敏;张玄可;袁伦强;;铬暴露对草鱼鳃抗氧化酶活性和脂质过氧化作用的影响[J];西南大学学报(自然科学版);2014年05期
2 阳益萍;黄锦利;刘静;李琴;陈栏心;覃丽琳;邹云锋;韦小敏;杨晓波;;长期职业性锰暴露对工人肺功能的影响[J];环境与职业医学;2013年01期
3 王艳艳;姚俊杰;梁正其;朱俊华;冯亚楠;;Pb~(2+)对建鲤幼鱼抗氧化酶活性和总抗氧化能力的影响[J];淡水渔业;2013年01期
4 申玲;贾克;;锰对大鼠肝脏线粒体氧化损伤的作用机制[J];蚌埠医学院学报;2011年12期
5 杨晨芸;邹建芳;贺今;;济南市某厂石灰石粉尘作业场所粉尘及其对接尘工人肺功能损伤情况调查[J];预防医学论坛;2011年02期
6 郑清梅;郭江山;温茹淑;韩春艳;;不同质量浓度铅对草鱼鱼种抗氧化性能的影响[J];水产科学;2010年11期
7 王凡;刘海芳;晋冬梅;王鹏;孙坤刚;张水土;;镉污染对鲤鱼过氧化氢酶活性的影响[J];水产科学;2010年09期
8 任宗明;李志良;;高锰酸钾及氯化锰对日本青溕的急、慢性毒性[J];生态毒理学报;2009年06期
9 唐洪鹏;王金涛;林洪金;徐世文;;亚慢性锰中毒对公鸡肝脏的毒性作用[J];中国家禽;2009年19期
10 刘俊;朱允华;胡南;吴彦琼;胡劲松;郑济芳;;花垣河软体动物多样性调查和水质评价[J];中国环境监测;2009年03期
相关重要报纸文章 前1条
1 谢必如;白文起;;告别“黑污染” 重现真“秀山”[N];中国国土资源报;2014年
相关博士学位论文 前1条
1 邓祥发;对氨基水杨酸钠(PAS-Na)对锰致大鼠大脑边缘系统损伤的干预机制研究[D];广西医科大学;2010年
相关硕士学位论文 前10条
1 黄大敏;锰暴露致心血管系统损伤效应的初步研究[D];广西医科大学;2015年
2 梁敏;长江上游重庆段鲇形目鱼类铬含量及铬暴露对斑点叉尾洶的毒理学影响[D];西南大学;2016年
3 张玄可;长江上游几种鲇形目鱼类镉含量及水体镉暴露对南方鲇的生理生态学影响[D];西南大学;2015年
4 唐仁军;锰对中期草鱼生长、消化吸收、肠道免疫的影响及其可能途径研究[D];四川农业大学;2014年
5 唐晓旭;慢性锰中毒诱导大鼠听觉损伤的研究[D];第四军医大学;2014年
6 孙伟;职业性接触锰作业工人健康危害及相关影响因素分析[D];宁夏医科大学;2014年
7 刘燕;水体中镉暴露对稀有泩鲫氧化应激及组织学影响[D];西南大学;2014年
8 唐青青;铜对生长中期草鱼消化吸收、抗氧化、免疫和肉质的影响[D];四川农业大学;2013年
9 田鹏;水体中镉暴露对草鱼的氧化胁迫研究[D];西南大学;2013年
10 郭婷;铬暴露对草鱼的氧化损伤及抗氧化能力的影响[D];西南大学;2013年
,本文编号:1858918
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1858918.html