表面活性剂对多环芳烃污染土壤的淋洗修复研究
本文选题:多环芳烃 + 土壤淋洗修复技术 ; 参考:《沈阳大学》2017年硕士论文
【摘要】:随着我国“退二进三”、“退城进园”等政策的实施。各地政府纷纷采取措施将焦化厂、化工厂等重污染企业迁往远郊区,对遗留厂址另行开发使用,那么遗留厂址表层土壤中最常见污染物就是多环芳烃,多环芳烃对人体“致癌”、“致畸”、“致突变”的作用以被社会所公认。土壤淋洗修复技术是一种行之有效的污染土壤治理技术,具有适用范围广、见效快、处理容量大、效果显著等特点,对多环芳烃污染土壤具有较好的实际应用前景。而表面活性剂可以通过增溶作用提高土壤中多环芳烃溶解度,因此表面活性剂成为了土壤淋洗修复技术最为常用的一种淋洗剂。本文采用批处理法结合液相色谱分析技术,首先研究了单一表现活性剂Triton X-100、SDS、Tween-80及复合表面活性剂SDS/Triton X-100对多环芳烃的增溶作用规律。其次以沈阳炼焦煤气厂搬迁区土壤为供试土壤,研究了Triton X-100、SDS/Triton X-100的液固比、浓度、淋洗震荡时间等条件对土壤淋洗修复效果的影响。最后将实验室得到的最适淋洗条件,依托异位淋洗修复复合装备进行了多环芳烃污染土壤淋洗修复的中试试验。主要取得了以下成果:(1)单一的表面活性剂Triton X-100、SDS、Tween-80对多环芳烃菲均具有明显的增溶作用,增溶作用效果由强到弱依次为:Triton X-100SDSTween-80。例如在表面活性剂浓度较低时(10mmol/L)时,表面活性剂Tween-80对多环芳烃菲没有增溶作用,而Triton X-100、SDS对菲有明显的增溶作用,而Triton X-100的增溶效果高于SDS。(2)复合表面活性剂的增溶作用大于单一表面活性剂的增溶作用。在固定了SDS浓度为10mmol/L、20mmol/L、40mmol/L、60mmol/L、80mmol/L不变的条件下,复合表面活性剂对菲的增溶效果随着Triton X-10浓度的增大而增大,在Triton X-100的浓度为60mmol/L时,增溶效果最佳。另外在SDS:Triton X-100的浓度比为20mmol/L:60mmol/L时的增溶效果要大于浓度比为10mmol/L:60mmol/L、40mmol/L:60mmol/L、60mmol/L:60mmol/L以及80mmol/L:60mmol/L的增溶效果,由此确定复合表面活性剂SDS/Triton X-100在浓度比为20mmol/L:60mmol/L,增溶效果最好,即复合表面活性剂的最佳浓度配比为1:3。(3)单一表面活性剂和复合表面活性剂对多环芳烃污染土壤都具有一定的洗脱效果,但二者对于多环芳烃的最佳淋洗条件存在一定的差异,其中单一表面活性剂Triton X-100的最佳淋洗液固比为20:1,最佳淋洗浓度为60mmol/L,最佳淋洗振荡时间为90min。复合表面活性剂SDS/Triton X-100的最佳淋洗液固比为10:1,最佳淋洗浓度为40mmol/L,最佳淋洗振荡时间为90min。(4)中试试验表明,在淋洗条件相同的情况下,中试修复效果可以达到实验室效果,且通过测量淋洗前后土壤中各种多环芳烃的含量,发现异位淋洗修复复合装备对多环芳烃污染土壤的修复效率基本达到80%以上。
[Abstract]:With the implementation of the policy of "retreating two into three" and "retreating into the garden". Local governments have taken measures to move heavily polluted enterprises, such as coking plants and chemical plants, to the far suburbs to develop and use the remaining plant sites separately. Then, the most common pollutants in the surface soil of the remaining plant sites are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons (PAHs) have been recognized as carcinogenic, teratogenic and mutagenic. Soil leaching and remediation technology is an effective treatment technology for contaminated soil, which has the characteristics of wide application range, quick effect, large treatment capacity and remarkable effect. It has a good prospect of practical application for polycyclic aromatic hydrocarbons (PAHs) contaminated soil. Surfactant can improve the solubility of polycyclic aromatic hydrocarbons (PAHs) through solubilization, so surfactant has become one of the most commonly used leaching agents for soil elution and remediation. In this paper, the solubilization of polycyclic aromatic hydrocarbons (PAHs) by single surfactant Triton X-100 SDSX Tween-80 and composite surfactant SDS/Triton X-100 was studied by batch treatment and liquid chromatographic analysis. Secondly, the effects of Triton X-100 SDS / Triton X-100 liquid / solid ratio, concentration and leaching shock time on the effect of soil elution and remediation were studied by taking the soil of the relocation area of Shenyang Coking Gas Plant as the test soil. Finally, a pilot experiment was carried out on the polycyclic aromatic hydrocarbons (PAHs) contaminated soil with the optimum elution conditions obtained in the laboratory and the heterotopic elution and remediation complex equipment. The main results are as follows: (1) the single surfactant Triton X-100 SDS- Tween-80 has obvious solubilization effect on phenanthrene polycyclic aromatic hydrocarbons, and the effect of solubilization is: Triton X-100 SDSTween-80. For example, when the concentration of surfactant is lower than 10 mmol / L, the surfactant Tween-80 has no solubilization effect on phenanthrene, while Triton X-100 has obvious solubilization effect on phenanthrene. The solubilization effect of Triton X-100 was higher than that of SDS.-2) the solubilization effect of Triton X-100 was higher than that of single surfactant. The solubilization effect of composite surfactants on phenanthrene increased with the increase of Triton X-10 concentration at a fixed concentration of 10 mmol / L ~ 20 mmol / L ~ (20) mmol / L ~ (40) mmol / L ~ (60) mmol 路L ~ (-1), and the solubilization effect of Triton X-100 was the best when the concentration of Triton X-100 was 60mmol/L. In addition, when the concentration ratio of SDS:Triton X-100 is 20mmol/L:60mmol/L, the solubilization effect of SDS/Triton X-100 is greater than that of 10 mmol / L: 60 mmol / L / L = 40 mmol / L: 60 mmol / L = 60 mmol / L / L, and the solubilization effect of 80mmol/L:60mmol/L is determined to be the best when the concentration ratio of the composite surfactant SDS/Triton X-100 is 20 mmol / L: 60 mmol / L, and the solubilization effect is the best when the concentration ratio of the composite surfactant SDS/Triton X-100 is 20 mmol / L: 60 mmol / L, That is, the optimum concentration ratio of composite surfactants is 1: 3. 3) both single surfactants and composite surfactants have a certain elution effect on polycyclic aromatic hydrocarbons contaminated soil, but there is a certain difference between them for the best elution conditions of polycyclic aromatic hydrocarbons (PAHs). The optimum elution solution solid ratio of single surfactant Triton X-100 is 20: 1, the optimum elution concentration is 60 mmol / L, and the optimal elution oscillation time is 90 min. The pilot-scale experiment of the composite surfactant SDS/Triton X-100 showed that under the same leaching conditions, the experimental results showed that the best elution solution solid ratio was 10: 1, the optimal elution concentration was 40 mmol / L, and the optimal elution oscillation time was 90 min. By measuring the contents of polycyclic aromatic hydrocarbons (PAHs) in soil before and after leaching, it was found that the remediation efficiency of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was above 80% with the compound equipment of ectopic leaching and remediation.
【学位授予单位】:沈阳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X53
【相似文献】
相关期刊论文 前10条
1 ;多环芳烃污染环境评定会在吉林召开[J];炭素技术;1985年06期
2 刘建华,祁士华,张干,张伟玲;拉萨市拉鲁湿地多环芳烃污染及其来源[J];物探与化探;2003年06期
3 刘瑞民,王学军;土壤多环芳烃污染的地统计学研究进展[J];中国环境监测;2004年04期
4 李春燕;;唐山市大气中多环芳烃污染现状研究[J];能源环境保护;2006年05期
5 孟梁;;生物堆修复城市多环芳烃污染土壤的调控研究[J];环境科学与技术;2013年05期
6 吴彦瑜;洪鸿加;周健;胡小英;彭晓春;陈志良;;白银市土壤多环芳烃污染特征[J];环境化学;2013年08期
7 于晓丽,张江;多环芳烃污染与防治对策[J];油气田环境保护;1996年04期
8 韦保仁;高为;;多环芳烃污染土壤的可行处理技术[J];土壤;2006年04期
9 史兵方;杨秀培;张有会;唐婧;蔡铎昌;;土壤中多环芳烃污染的研究进展[J];安徽农业科学;2007年06期
10 林爱军;李晓亮;王凤花;谢文娟;;土壤多环芳烃污染的植物根际降解研究[J];中国农学通报;2011年32期
相关会议论文 前10条
1 吕俊岗;许人骥;张庆华;魏复盛;江桂斌;;云南省宣威市与富源县室内外空气中多环芳烃污染现状[A];中国化学会第26届学术年会环境化学分会场论文集[C];2008年
2 杨建刚;刘翔;;多环芳烃污染土壤的生物修复机理研究[A];第七次“土壤与环境”学术研讨会论文摘要[C];2001年
3 韩菲;尚宏志;王英艺;刘颖颖;;辽东湾及国内外海湾多环芳烃污染研究进展[A];中国环境科学学会2009年学术年会论文集(第一卷)[C];2009年
4 赵玉丽;杨利民;王秋泉;;大气多环芳烃污染水平的“时间与空间分辨”监测[A];第三届全国环境化学学术大会论文集[C];2005年
5 方宇;严重玲;;多环芳烃污染土壤的红树植物根际修复研究[A];第四届中国红树林学术会议论文摘要集[C];2008年
6 李桂英;乔梦;孙红卫;安太成;傅家谟;盛国英;;珠江三角洲地区饮用水源水中多环芳烃污染现状及人体健康危害的评价研究[A];《分析测试学报》2010年11月增刊4——第四届广东省分析化学研讨会论文集[C];2010年
7 王晓光;巩宗强;图影;吴进宝;;应用脂肪酸甲酯淋洗修复高浓度多环芳烃污染土壤[A];第五届全国环境化学大会摘要集[C];2009年
8 刘钰;魏全伟;朱桂艳;李洪波;王路光;王靖飞;;河北大气PM10中多环芳烃污染特征及健康风险评价[A];第五届全国环境化学大会摘要集[C];2009年
9 张志远;王翠平;孙红文;刘海滨;许伟;;原位电动微生物联用技术修复多环芳烃污染土壤的中试研究[A];持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集[C];2011年
10 何艳;王娇娇;马斌;徐建明;;单载体和复合载体菌剂对多环芳烃污染的修复研究[A];面向未来的土壤科学(下册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
相关博士学位论文 前2条
1 孙然;豇豆与根瘤菌共生体系生物修复多环芳烃污染土壤的机理研究[D];西北农林科技大学;2015年
2 周笑白;植物—丛枝菌根真菌修复多环芳烃污染土壤[D];大连理工大学;2011年
相关硕士学位论文 前10条
1 P侈仍,
本文编号:1910319
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1910319.html