ABR-MBR组合工艺反硝化除磷协同机制研究
本文选题:ABR-MBR组合工艺 + 反硝化除磷 ; 参考:《苏州科技大学》2017年硕士论文
【摘要】:本研究将厌氧折流板反应器(ABR)和膜生物反应器(MBR)进行有机组合,构建新型的耦合联动型ABR-MBR组合工艺,结合厌氧折流板反应器(ABR)微生物相分离及膜生物反应器(MBR)水力停留时间与泥龄分离的特性,通过增设硝化液回流与污泥回流来实现ABR与MBR的循环联动,强化ABR为反硝化除磷提供足够的优质碳源,实现反硝化除磷各功能单元的构建,对其反硝化除磷协同机制展开了研究。本研究的主要研究结果如下:(1)前端ABR的高效去碳是MBR有效硝化的重要保障。在ABR进水有机负荷为1、1.5和2 kg·(m3·d)-1时,ABR出水COD浓度稳定在60 mg·L-1,MBR内NH4+-N的平均去除率达95%以上,低的ABR出水COD浓度保证了MBR内NH4+-N的高效去除;实现ABR有效去碳与MBR硝化耦合的最佳有机负荷为2.0 kg·(m3·d)-1,此负荷下VFA的峰值点位于HRT为2.4 h,ABR第2隔室能为后续反硝化除磷厌氧段释磷提供VFA浓度为54.88 mg·L-1。(2)在ABR段有机负荷为2.0 kg·(m3·d)-1、系统的HRT为9 h、SRT为15 d,污泥回流比为100%,硝化液回流比从100%增大至350%时,系统出水COD和NH4+-N浓度分别在50 mg·L-1和1 mg·L-1以下,组合工艺可实现对COD和NH4+-N的稳定有效去除。ABR为厌氧释磷提供了足够的优质碳源,此时的ABR第2隔室平均释磷量分别为9.41、9.83、7.03和3.18 mg·L-1,平均缺氧吸磷量依次为8.8、13.9、11.79和6.5 mg·L-1。硝化液回流比若过高,厌氧段释磷量会受到随污泥循环携带的NOx--N影响;硝化液回流比若过低,缺氧吸磷则因电子受体不足而效果不佳,MBR供应适量的电子受体是ABR内高效反硝化除磷的重要前提。组合工艺最终平均出水溶解性PO43--P浓度分别为1.49、0.5、0.43和1.74 mg·L-1,MBR内的好氧除磷保障了组合工艺对磷的进一步去除。(3)在ABR-MBR组合工艺的总HRT为9 h、SRT为15 d,污泥回流比为100%,硝化液回流比为300%时,在C/N比分别为3.6、4.2、4.8、6.0和7.2时,组合工艺最终出水平均溶解性PO43--P浓度依次为0.22、0.34、0.39、0.42和2.45 mg·L-1,低C/N条件有利于本工艺对磷的去除。在C/N=3.6~6.0时,ABR缺氧吸磷量与工艺对TN去除量有着良好的线性关系,关系式如下:PO43--P缺氧吸收量=3.7821 TN去除量+21.579,较低的进水COD浓度限制了工艺对TN的去除,此阶段提高进水C/N比有助于系统对氮、磷的去除。过高的进水COD浓度因影响缺氧段吸磷及后续MBR的有效硝化而导致了反硝化除磷体系的崩溃。(4)本研究构建了ABR-MBR一体化反应器处理生活污水,基于ABR优质供碳与MBR硝化液回流比相耦合,实现了稳定有效的反硝化除磷效果。在ABR段有机负荷为2.0 kg·(m3·d)-1、系统的HRT为9 h、SRT为15 d,污泥回流比为100%,硝化液回流比为300%时,ABR-MBR组合工艺获得工艺最佳反硝化除磷效果,TN和溶解性PO43--P平均去除率分别达84%和94%,反硝化除磷量达磷总去除量的87%,平均出水TN和溶解性PO43--P浓度分别为12.98 mg·L-1和0.43 mg·L-1。
[Abstract]:In this study, the anaerobic baffle reactor (ABR) and the membrane bioreactor (MBR) were organically combined to construct a new coupling combined process of ABR-MBR. Combined with the characteristics of anaerobic baffle reactor (ABR) microbial phase separation and membrane bioreactor (MBR) hydraulic retention time (HRT) and sludge age separation, the cyclic linkage of ABR and MBR was realized by adding nitrifying liquid reflux and sludge reflux. Enhanced ABR provided sufficient carbon source for denitrifying phosphorus removal and realized the construction of various functional units for denitrifying phosphorus removal. The synergistic mechanism of denitrification phosphorus removal was studied. The main results of this study are as follows: (1) the efficient decarbonization of ABR is an important guarantee for effective nitrification of MBR. When the influent organic loading of ABR is 1g / 1.5 and 2 kg / m ~ 3 / d ~ (-1), the average removal rate of NH4 -N is over 95% in 60 mg / L ~ (-1) ABR effluent. The low COD concentration of ABR effluent ensures the efficient removal of NH4 -N in MBR. The optimum organic loading to realize the coupling of ABR effective decarbonization and MBR nitrification is 2.0 kg / m ~ 3 / d ~ (-1). Under this load, the peak point of VFA is located in the second compartment of HRT = 2.4 h, which can provide the VFA concentration of 54.88 mg / L ~ (2) for subsequent denitrifying phosphorus removal in anaerobic stage) organic negative in ABR stage. When the charge is 2.0 kg / m ~ 3 ~ (-1), the HRT of the system is 9 h ~ (-1), the SRT of the system is 15 days, the ratio of sludge reflux is 100 and the ratio of nitrification liquid reflux is increased from 100% to 350 ~ (50) d ~ (-1). The effluent concentrations of COD and NH4 were below 50 mg L-1 and 1 mg L-1, respectively. The stable and effective removal of COD and NH4 -N by the combined process could provide sufficient high quality carbon source for anaerobic phosphorus release. The average release of phosphorus in the second compartment of ABR was 9.41 ~ 9.83 mg / L and 3.18 mg / L, respectively, and the average amount of phosphorus uptake by hypoxia was 8.8mg / L and 6.5mg / L, respectively. If the reflux ratio of nitrification liquid is too high, the amount of phosphorus release in anaerobic stage will be affected by the NOx--N carried with sludge cycle, and if the ratio of reflux of nitrification liquid is too low, Anoxic phosphorus uptake is a prerequisite for high efficiency denitrifying phosphorus removal in ABR due to the lack of electron receptors. The final average dissolved PO43--P concentration of the combined process was 1.49mg / L 0.43 and 1.74 mg / L respectively, which ensured the further removal of phosphorus by the combined process. When the total HRT of the combined process was 9 hs, the sludge reflux ratio was 15 days, and the nitrifying liquid reflux ratio was 300, the total HRT of the combined process was 9 h, the sludge reflux ratio was 100 d, and the nitrifying liquid reflux ratio was 300 d, respectively. When the ratio of C / N was 3.6? 2?, the average dissolved PO43--P concentration in the final effluent of the combined process was 0.220.34? There is a good linear relationship between anoxic phosphorus uptake and TN removal in C/N=3.6~6.0. The relationship is as follows: 1: PO43 P anoxic absorption 21.579. The lower influent COD concentration limits the removal of TN by the process. At this stage, increasing the C / N ratio is helpful to the removal of nitrogen and phosphorus. The excessive concentration of COD in influent caused the collapse of denitrifying phosphorus removal system because of the influence of anoxic stage phosphorus absorption and the effective nitrification of subsequent MBR. (4) in this study, an integrated ABR-MBR reactor was constructed to treat domestic sewage. The stable and effective denitrifying phosphorus removal effect was realized based on the coupling of ABR high quality carbon supply and reflux ratio of MBR nitrifying liquid. At the organic loading of 2.0 kg / m ~ 3 ~ (-1) in ABR stage, the HRT of the system is 9 h ~ (-1), the SRT of the system is 15 days, the ratio of sludge reflux is 100, and the ratio of nitrification-liquid reflux is 300, the optimum denitrification phosphorus removal efficiency (TN) and the average removal rate of dissolved PO43--P are 84%, respectively. The denitrification phosphorus removal amount reached 87% of the total phosphorus removal amount. The average TN and dissolved PO43--P concentrations in the effluent were 12.98 mg L-1 and 0.43 mg L-1, respectively.
【学位授予单位】:苏州科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【相似文献】
相关期刊论文 前10条
1 万金保;王建永;;反硝化除磷理论及运用现状[J];水处理技术;2008年03期
2 王德兴;孙立柱;沈耀良;;废水反硝化除磷影响因素的分析[J];环境科技;2008年05期
3 张红;张可方;张朝升;荣宏伟;;反硝化除磷菌的培养及驯化[J];广东化工;2009年06期
4 张少辉;姜应和;;短程反硝化除磷技术研究[J];安徽农业科学;2011年20期
5 王亚宜,彭永臻,王淑莹,李勇智,潘绵立;反硝化除磷理论、工艺及影响因素[J];中国给水排水;2003年01期
6 刘丽玲,操家顺,林涛;脱氮除磷新途径——反硝化除磷[J];化工设计;2004年02期
7 张洁;黄仁刚;常建伟;张魁峰;王海燕;;亚硝酸盐等因素对反硝化除磷的影响及对策[J];江苏环境科技;2005年S1期
8 王春丽;马放;米海蓉;刘慧;;反硝化除磷系统的启动及其稳定性研究[J];给水排水;2006年S1期
9 张杰;李小明;杨麒;陈瑶;;反硝化除磷技术及其实现新途径[J];工业用水与废水;2007年03期
10 刘建广;宋武昌;王珊珊;;反硝化除磷菌驯化富集方式的探讨[J];环境污染与防治;2008年12期
相关会议论文 前1条
1 朱光灿;王佳;雷晓芬;余冉;吕锡武;;耦合SND与反硝化除磷的SBR系统运行影响因素研究[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
相关博士学位论文 前7条
1 李微;短程反硝化除磷脱氮工艺与微生物特性研究[D];东北大学;2013年
2 吕小梅;反硝化除磷菌群结构与工艺调控策略[D];哈尔滨工业大学;2014年
3 石玉明;A~2SBR反硝化除磷工艺效能及微生物生理生态特征研究[D];哈尔滨工业大学;2009年
4 刘洪波;低浓度城市污水强化反硝化除磷[D];同济大学;2007年
5 王亚宜;反硝化除磷脱氮机理及工艺研究[D];哈尔滨工业大学;2004年
6 苗志加;强化生物除磷系统聚磷菌的富集反硝化除磷特性[D];北京工业大学;2013年
7 李相昆;反硝化除磷工艺与微生物学研究[D];哈尔滨工业大学;2006年
相关硕士学位论文 前10条
1 杨瑞丰;以硝氮为主要氮源反硝化除磷细菌的驯化及影响因素研究[D];大连理工大学;2015年
2 高会杰;城市污水反硝化除磷工艺及N_2O减量控制研究[D];河北科技大学;2014年
3 李梅芳;厌氧—好氧—缺氧模式的SBR处理生活污水的研究[D];太原理工大学;2013年
4 康婷婷;猪场沼液自养脱氮耦合反硝化除磷技术研究[D];浙江大学;2016年
5 邹杰;短程反硝化除磷菌培养及分离的实验研究[D];东北大学;2014年
6 李平;序批式移动床生物膜反应器强化反硝化除磷处理城镇生活污水[D];吉林大学;2016年
7 杨胤;改良A~2/O工艺反硝化除磷性能的中试研究[D];华南理工大学;2016年
8 徐立然;SND与反硝化除磷耦合过程碳源利用及微生物作用机制研究[D];东南大学;2015年
9 郭意;纤维填料型A~2/O工艺生活污水处理及反硝化除磷效能[D];东北林业大学;2016年
10 杨杰;生活污水SBR后置缺氧反硝化除磷实验研究[D];北京工业大学;2016年
,本文编号:1942865
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1942865.html