复配表面活性剂增溶洗脱修复多环芳烃污染土壤实验
本文选题:多环芳烃 + 表面活性剂 ; 参考:《中国矿业大学》2017年硕士论文
【摘要】:本论文针对徐州某焦化厂遗留场地的多环芳烃污染情况,选取菲、芘作为目标污染物,将烷基糖苷(APG)和十二烷基苯磺酸钠(SDBS)按不同比例复配,考察其复配行为及对菲、芘的增溶洗脱效果,结果如下:(1)APG/SDBS复配体系的复配行为研究表明:C总一定时,随着复配比α增大,表面张力γ和临界胶束浓度CMC表现出先降低后升高的趋势;当α=0.4时复配体系的CMC最小(200mg/l),且当α≤0.4时,复配体系CMC均低于二者单一表面活性剂的CMC;当α≤0.7时,实际测得CMCexp值低于理想溶液混合的CMC*值,复配体系表现出较为明显的增效作用;(2)APG/SDBS复配体系水溶液中菲、芘的增溶效果研究表明:当复配体系的α一定时,随着C总的增加菲、芘的Sw和Sw/S*均增加。当复配体系C总一定时,随着α增大,菲、芘的Sw和Sw/S*先升高后降低,α=0.4时得到最高值,α=1时得到最低值;复配体系对菲、芘的MSR在α=0.2,0.3,0.4时较高。当复配体系C总和α一定时,菲的Sw和MSR均大于芘,但是芘的Sw/S*远大于菲。环境温度由10℃升至50℃,菲、芘的Sw逐渐升高,当温度高于30℃,增加趋势变缓;体系p H由5升至10,菲、芘的Sw先增加后缓慢降低,在p H=9时最大(菲:33.83mg/l、芘:30.68mg/l)。(3)复配体系在不同浓度、复配比、固液比、温度、p H及超声条件下对土壤中菲、芘的洗脱率实验研究表明:复配体系浓度C总=4000mg/l时,随着α增大,对菲、芘的洗脱效率先升高后降低,在α=0.4时达到最高值,菲72.4%、芘61.05%,且洗脱效率明显高于单一的SDBS和APG;α=0.4时,随着C总不断增大,复配体系对菲、芘的洗脱效率逐渐升高。α=0.4,C总=4000mg/l时,随着p H升高,复配体系对菲、芘的洗脱效率先增加后降低,在p H为9左右达到最大值(菲:72.78%、芘:61.05%);表面活性剂溶液体积、温度、超声时间的增加,复配体系对菲、芘的洗脱效率增加;超声时间的增加,复配体系对菲、芘的洗脱效率逐渐增大,且超声显著提高复配体系对菲、芘的洗脱效率,超声时间为3h时,菲、芘洗脱效率已从未超声前的73.4%和61.2%增加至94.2%和91.4%。
[Abstract]:In this paper, we selected phenanthrene and pyrene as the target pollutant in the pollution of polycyclic aromatic hydrocarbons in a coking plant in Xuzhou. The compound behavior of alkyl glucoside (APG) and twelve alkyl benzene sulfonate (SDBS) were investigated in different proportions, and the solubilization and elution effects of phenanthrene and pyrene were investigated. The results were as follows: (1) the study table of the compound behavior of the (1) APG/SDBS compound system Ming: when C is always certain, with the increase of compound ratio alpha, the surface tension and the critical micelle concentration CMC show a tendency to decrease first and then increase. When alpha =0.4 is the minimum CMC (200mg/l) of the compound system, and when alpha < 0.4, the CMC of the compound system is lower than the CMC of the single surfactant of two. When the alpha is less than 0.7, the actual CMCexp value is lower than the ideal solution mixing. The CMC* value of the compound system showed a more obvious synergistic effect. (2) the study on the solubilization of phenanthrene and pyrene in the aqueous solution of the APG/SDBS compound system showed that when the alpha of the compound system was fixed, the Sw and Sw/S* of pyrene increased with the increase of the total C of phenanthrene and pyrene. When the compound system C was always certain, with the increase of alpha, the Sw and Sw/S* of phenanthrene and pyrene were raised first and then decreased, and the alpha =0.4 was reduced. When the maximum value is obtained, the lowest value is obtained at alpha =1, and the MSR of pyrene is higher at alpha =0.2,0.3,0.4. When the compound system C sum alpha is certain, the Sw and MSR of phenanthrene are larger than pyrene, but the Sw/S* of pyrene is larger than phenanthrene. The environmental temperature rises from 10 to 50, and the Sw of phenanthrene and pyrene gradually rises, when the temperature is higher than 30, the trend becomes slow; P H of the system is 5. To 10, the Sw of phenanthrene and pyrene increased slowly and then decreased slowly at P H=9 (phenanthrene: 33.83mg/l, pyrene: 30.68mg/l). (3) the experimental study on the elution rate of phenanthrene and pyrene in soil under the conditions of different concentration, compound ratio, solid-liquid ratio, temperature, P H and ultrasonic conditions showed that when the concentration of the compound system was total =4000mg/l, the elution efficiency to phenanthrene and pyrene with the increase of alpha was increased. First increase and then decrease, the highest value is reached at alpha =0.4, phenanthrene 72.4% and pyrene 61.05%, and the elution efficiency is obviously higher than that of single SDBS and APG. As C increases, the elution efficiency of phenanthrene and pyrene gradually increases with the increasing of C. When alpha =0.4, C total =4000mg/l, the elution efficiency of phenanthrene and pyrene in the compound system increases first and then decreases with the increase of P H, in P H. To reach the maximum value of 9 (phenanthrene: 72.78%, pyrene: 61.05%), the volume, temperature, and ultrasonic time of the surfactant increased, the elution efficiency of phenanthrene and pyrene increased, the ultrasonic time increased, the elution efficiency of phenanthrene and pyrene increased gradually, and the elution efficiency of the compound system to phenanthrene and pyrene was increased significantly by ultrasound, and the ultrasonic time was 3H The elution efficiency of phenanthrene and pyrene has increased from 73.4% and 61.2% before ultrasound to 94.2% and 91.4%. respectively.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X53
【参考文献】
相关期刊论文 前10条
1 杨勇;黄海;;北京某焦化企业场地污染修复案例简析[J];世界环境;2016年04期
2 孙涛;陆扣萍;王海龙;;不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J];浙江农林大学学报;2015年01期
3 宋昕;林娜;殷鹏华;;中国污染场地修复现状及产业前景分析[J];土壤;2015年01期
4 冯俊生;张俏晨;;土壤原位修复技术研究与应用进展[J];生态环境学报;2014年11期
5 廖洋;梁海鹏;黄春萍;赵俊;蒋云福;赵仕林;;土壤持久性有机污染物控制与修复研究进展[J];四川师范大学学报(自然科学版);2013年05期
6 朱光旭;郭庆军;杨俊兴;张晗芝;魏荣菲;王春雨;Marc Peters;;淋洗剂对多金属污染尾矿土壤的修复效应及技术研究[J];环境科学;2013年09期
7 刘其友;李琳;张云波;赵东风;赵朝成;;Fenton氧化技术处理稠油污染土壤[J];环境工程学报;2013年04期
8 卢明;王志彬;;美国超级基金制度对我国土壤污染防治的启示[J];安徽农业科学;2013年05期
9 金一凡;周连杰;杰克;叶旭明;;污染土壤修复技术的探讨[J];环境科技;2012年05期
10 叶茂;杨兴伦;魏海江;卞永荣;王芳;谷成刚;蒋新;;持久性有机污染场地土壤淋洗法修复研究进展[J];土壤学报;2012年04期
相关博士学位论文 前1条
1 赵康;地下水中挥发性有机污染物的原位气相生物修复新型技术研究[D];华东理工大学;2011年
相关硕士学位论文 前1条
1 阙明学;我国土壤中多氯联苯污染分布及源解析[D];哈尔滨工程大学;2007年
,本文编号:1951619
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1951619.html