厌氧氨氧化处理高盐废水脱氮效能强化研究
本文选题:盐度 + 厌氧氨氧化 ; 参考:《青岛大学》2017年硕士论文
【摘要】:针对部分含盐废水生物脱氮效能较低的问题,利用已经海水驯化后的淡水厌氧氨氧化反应器,通过向反应器中分别添加了不同浓度的K+、甜菜碱和海藻糖,研究了它们浓度变化对厌氧氨氧化污泥脱氮效能的影响,试验结果如下所示:适量的添加K+可有效的提升反应脱氮效能,K+对厌氧氨氧化污泥的脱氮效能影响主要分为4个阶段:适应阶段,K~+浓度为(0~2 mmol//L),厌氧氨氧化适应K+的存在,NH_4~+-N,NO_2~--N去除率有所上升,但K+还未对脱氮效能产生明显效果;活性提升阶段(2~8 mmol/L),K+对厌氧氨氧化生物系统有促进作用,氮去除率显著提升;活性稳定阶段(8~20 mmol/L),脱氮效能处于稳定状态,氮去除率虽有下降,但还是高于未添加K+时;抑制阶段(大于20 mmol/L),此时厌氧氨氧化菌活性降低,K+对厌氧氨氧化产生完全抑制。在整个周期内K+浓度8mmol/L时达到最佳去除效果,NH_4~+-N与NO_2~--N的平均去除率为89.24%和84.87%,NRR为1.113 kg N/(m~3·d)。在投加甜菜碱对厌氧氨氧化脱氮效能的影响试验中发现:(1)投加甜菜碱对系统脱氮效能有明显的改善作用,甜菜碱浓度为0.1~0.4 mmol/L时,添加甜菜碱缓解了盐胁迫对厌氧氨氧化菌生长的抑制,也促进了反硝化菌的生长;甜菜碱浓度为0.4~0.5 mmol/L时,此时反硝化菌的生长占有优势,但对反应表现为促进作用。甜菜碱浓度大于0.5 mmol/L后,添加甜菜碱已无法缓解盐胁迫对反应器脱氮效能的抑制,最终在甜菜碱浓度0.8 mmol/L时对反应器产生完全抑制。(2)甜菜碱的添加浓度为0.3 mmol/L浓度时,反应去除效能达到最佳,NH_4~+-N和NO_2~--N分别提升了16%和32%,NRR提升了26.8%。(3)在最后的恢复试验中,经过25周期的运行,在甜菜碱浓度降至0.2mmol/L时反应器脱氮效能得到恢复,这说明随着甜菜碱浓度的降低反应器脱氮效能得到快速恢复,甜菜碱对反应器的影响是可逆的。在外源投加海藻糖试验中发现:(1)在稳定运行的厌氧氨氧化处理高盐废水系统中,投加海藻糖对厌氧氨氧化系统脱氮效能有明显的改善作用,不同浓度的海藻糖对厌氧氨氧化的脱氮效能有不同影响。海藻糖浓度在0~0.35 mmol/L范围内,添加海藻糖缓解了盐胁迫对厌氧氨氧化菌生长的抑制;海藻糖浓度为0.4~1mmol/L时,此时海藻糖浓度对厌氧氨氧化菌产生抑制但还是促进反硝化菌的生。海藻糖浓度大于1 mmol/L后,添加海藻糖已对反应器脱氮效能产生不利影响,最终在海藻糖浓度为1.6 mmol/L时反应器产生抑制作用。(2)在0.35 mmol/L浓度下,NH_4~+-N和NO_2~--N平均去除率分别为92.35%和97.36%,NRR为1.29 kg N/(m~3.d),此时厌氧氨氧化的脱氮效能达到最佳效果,与0 mmol/L时相比,NH_4~+-N和NO_2~--N去除率分别提升了53.8%和55.7%。
[Abstract]:In order to solve the problem of low biological nitrogen removal efficiency of some salt-containing wastewater, a fresh water anaerobic ammonia oxidation reactor, which has been domesticated by seawater, was used to add different concentrations of K, betaine and trehalose to the reactor, respectively, by adding different concentrations of K, betaine and trehalose to the reactor. The effect of their concentration on denitrification efficiency of anaerobic ammoxidation sludge was studied. The experimental results are as follows: proper addition of K can effectively enhance the efficiency of reactive denitrification. The effect of K on the denitrification efficiency of anaerobic ammonia oxidation sludge can be divided into four stages: the concentration of K ~ in the adaptation stage is 0 ~ 2 mmol / L ~ (-1), and the anaerobic ammonia oxidation adapts to K The removal rate of NH _ 4 ~ -N _ (no _ 2-N) increased, However, K has no obvious effect on denitrification efficiency; in the stage of activity enhancement, it can promote the anaerobic ammonia oxidation biological system, and the removal rate of nitrogen is significantly increased, while in the stage of activity stabilization, the nitrogen removal efficiency is in a stable state, but the removal rate of nitrogen is decreased. But it was still higher than that without K addition, and at the inhibition stage (> 20 mmol / L ~ (-1), the activity of anaerobic ammonia-oxidizing bacteria decreased and K completely inhibited the anaerobic ammonia oxidation. The average removal rate of NH _ 4 ~ -N and no _ 2 ~ -N was 89.24% and 84.87% respectively when K concentration was 8 mmol / L during the whole cycle. The average removal rate of NH _ 4- N and no _ 2 ~ -N was 1.113 kg N / m ~ (-1) 3 d ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) 路L ~ (-1). The effect of betaine on anaerobic ammoxidation denitrification efficiency was tested. It was found that betaine could improve the nitrogen removal efficiency of the system obviously. When the concentration of betaine was 0.1 ~ 0.4 mmol / L, the nitrogen removal efficiency of the system was obviously improved by adding betaine. The addition of betaine alleviated the inhibition of the growth of anaerobic ammonia-oxidizing bacteria under salt stress and promoted the growth of denitrifying bacteria. When the concentration of betaine was 0.4 ~ 0.5 mmol / L, the growth of denitrifying bacteria was dominant, but the growth of denitrifying bacteria was promoted. When the concentration of betaine was greater than 0.5 mmol / L, the inhibition of nitrogen removal efficiency could not be alleviated by adding betaine to the reactor. Finally, when the concentration of betaine was 0.8 mmol / L, the reactor was completely inhibited, and the concentration of betaine was 0.3 mmol / L. In the final recovery experiment, the nitrogen removal efficiency of the reactor was restored when the concentration of betaine decreased to 0.2 mmol / L, and the nitrogen removal efficiency increased by 16% and 26.88% respectively. The results showed that the nitrogen removal efficiency of the reactor recovered rapidly with the decrease of betaine concentration, and the effect of betaine on the reactor was reversible. In the experiment of adding trehalose to external source, it is found that the addition of trehalose can improve the nitrogen removal efficiency of anaerobic ammonia oxidation system in the stable operation of anaerobic ammonia oxidation treatment of high-salt wastewater system. Different concentrations of trehalose have different effects on the denitrification efficiency of anaerobic ammonia oxidation. Trehalose concentration in the range of 0 ~ 0.35 mmol / L alleviated the inhibition of the growth of anaerobic ammonia-oxidizing bacteria under salt stress, and when trehalose concentration was 0.4 ~ 1 mmol / L, trehalose concentration inhibited the growth of anaerobic ammonia-oxidizing bacteria but promoted the growth of denitrifying bacteria. When trehalose concentration is more than 1 mmol / L, adding trehalose has a negative effect on nitrogen removal efficiency of reactor. Finally, when trehalose concentration was 1.6 mmol / L, the reactor had inhibitory effect. (2) at 0.35 mmol / L concentration, the average removal rates of NH _ 4- N and no _ 2 ~ -N were 92.35% and 97.36% respectively, and the denitrification efficiency of anaerobic ammonia oxidation was the best. Compared with 0 mmol / L, the removal rates of NH _ 4-N and no _ 2-N increased by 53.8% and 55.7%, respectively.
【学位授予单位】:青岛大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 杨少龙;吕珊珊;刘波;崔云前;;海藻糖的作用及生产方法研究进展[J];食品工业;2016年10期
2 闫道良;郑炳松;;海藻糖浸种对盐胁迫下扬麦19生理特性的影响[J];浙江农业学报;2016年08期
3 齐泮晴;于德爽;李津;魏思佳;管勇杰;;盐度对厌氧氨氧化工艺处理含海水污水脱氮特性的影响[J];中国环境科学;2016年05期
4 王羽;云雪艳;张晓燕;王立立;梁晓红;呼和;董同力嘎;;海藻糖对蛋白质的抗逆保护及其在食品领域中的应用[J];食品科技;2015年10期
5 段元东;吕伟;李玉龙;李洁冰;李登新;;无机盐离子对负载型催化剂Co_3O_4/GO降解PVA废水的影响[J];环境工程学报;2015年10期
6 李智行;张蕾;陈晓波;李航;李旦;;高效耐海水型厌氧氨氧化污泥的驯化[J];中国环境科学;2015年03期
7 李祥;黄勇;巫川;王孟可;袁怡;;Fe~(2+)和Fe~(3+)对厌氧氨氧化污泥活性的影响[J];环境科学;2014年11期
8 徐婷;周传余;周超;赵索;武琳琳;谭可菲;;海藻糖对盐胁迫下薄皮甜瓜幼苗抗氧化系统的影响[J];北方园艺;2014年19期
9 杨红薇;陈佼;张建强;;K~+、Ca~(2+)、Mg~(2+)对高盐肝素废水处理的影响[J];环境工程学报;2014年10期
10 王伟伟;唐鸿志;许平;;嗜盐菌耐盐机制相关基因的研究进展[J];微生物学通报;2015年03期
相关博士学位论文 前3条
1 陆慧锋;耐盐厌氧氨氧化工艺性能及其机理研究[D];浙江大学;2015年
2 唐崇俭;厌氧氨氧化工艺特性与控制技术的研究[D];浙江大学;2011年
3 李玲玲;高盐度废水生物处理特性研究[D];中国海洋大学;2006年
相关硕士学位论文 前7条
1 吴红珍;色盐杆菌DSM 22428~T新种鉴定及其甜菜碱醛脱氢酶研究[D];山东师范大学;2015年
2 徐菁;金霉素对全程自养脱氮微生物的抑制及机理研究[D];北京交通大学;2014年
3 鲍振国;厌氧—部分亚硝化—厌氧氨氧化处理榨菜废水的脱氮性能试验研究[D];重庆大学;2013年
4 马春;厌氧氨氧化工艺处理低温和高盐度废水的可行性研究[D];杭州师范大学;2012年
5 吴绮桃;超高盐榨菜腌制废水处理技术试验研究[D];重庆大学;2007年
6 曾朝银;高盐高氮高有机浓度榨菜废水脱氮除磷技术试验研究[D];重庆大学;2005年
7 何健;高盐难降解工业废水微生物处理的污泥驯化研究与应用[D];南京农业大学;2000年
,本文编号:2003748
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2003748.html