我国碳排放省域差异及影响因素研究
本文选题:碳排放 + 省域差异 ; 参考:《江西财经大学》2017年硕士论文
【摘要】:随着经济的快速发展,全球的气候问题也越来越突出,吸引了全国人民的广泛关注,其中突出的是二氧化碳等温室气体,这也是造成地球温度普遍升高的原因之一。因此实现碳的减排是应对气候变化的重中之重。首先,对1995-2015年我国30个省区碳排放量进行核算,构建面板数据库,并将30个省区按碳排放、人均碳排放、碳排放强度分别聚类,研究了各类别所属省区的碳排放差异。研究发现碳排放量、人均碳排放总体上升,碳排放强度总体下降,但不同省域在不同时期有较小的波动。通过对碳排放、能源消耗和GDP三个变量建立多变量聚类模型,得到了3类不同省域。从该3类不同省域来看,第3类省域中山东、辽宁、广东等省区碳排放量及人均碳排放量远远高于其他地区,而碳排放强度却最低,第1类省域中内蒙古、新疆等省区碳排放强度最高。其次,研究了3类省域碳排放、人均碳排放、碳排放强度的异同。在此基础上,利用扩展的STIRPAT模型对我国总体影响因素进行静态面板模型和动态GMM模型估计。在静态面板模型当中,除技术水平外其余因素对碳排放均有显著的正向影响,而技术水平对碳减排有显著的正向影响。经济弹性系数最大,即人均GDP变动对碳排放影响最明显。在动态面板模型当中,上一期碳排放量对当期具有显著的路径依赖特征。人口规模、经济水平对碳排放也显著为正,但其弹性系数有所下降。另外,经济水平依然是几个弹性中最大的,且只有人口、经济水平上一期的值对当前碳排放量有明显的负向抑制作用。再次,对3类不同省域的碳排放影响因素作分解。在静态面板模型中,3类省域回归结果与总体一致,其中第1类省域模型中的人口弹性最大,第2类和第3类省域模型中的经济弹性最大。在动态面板模型中,滞后一期的碳排放回归系数按从大到小排列的省域依次为第1类(1.129)、第3类(1.101)和第2类(1.087)省域。最后,根据实证结果对全国和3类省域提出相应的碳减排建议。其中,对于全国而言,应控制人口过度增长,倡导低碳生活,提高能源利用率,广泛开展节能工作,并且出台能源消费的有关法律政策,保证政策得以有力实施。对各类省域而言,第1类省域应控制人口增长、加快城镇化进程,第2类省域应促进经济增长、加快城镇化进程和提高技术水平,第3类省域应持续控制人口增长、提高技术水平。
[Abstract]:With the rapid development of economy, the global climate problem is becoming more and more prominent, attracting the widespread attention of the whole country, especially carbon dioxide and other greenhouse gases, which is one of the causes of the global warming. Therefore, carbon emission reduction is the top priority in tackling climate change. Firstly, the carbon emissions of 30 provinces and regions in China from 1995 to 2015 are calculated, and the panel database is constructed, and the carbon emissions of 30 provinces and autonomous regions are clustered according to carbon emissions, per capita carbon emissions and carbon emission intensities, respectively, and the differences of carbon emissions between the provinces and autonomous regions of each category are studied. It is found that the carbon emissions per capita increase and the intensity of carbon emissions decrease, but there are small fluctuations in different provinces in different periods. Through the establishment of multi-variable clustering model for three variables, carbon emission, energy consumption and GDP, three kinds of different provincial regions are obtained. From the perspective of these three different provinces, the carbon emissions and per capita carbon emissions of Shandong, Liaoning, Guangdong and other provinces in the third category are far higher than those in other regions, but the intensity of carbon emissions is the lowest. Xinjiang and other provinces and regions the highest intensity of carbon emissions. Secondly, the similarities and differences of three kinds of provincial carbon emission, per capita carbon emission and carbon emission intensity are studied. On this basis, the static panel model and dynamic GMM model are used to estimate the total influencing factors in China by using the extended STIRPAT model. In the static panel model, except for the technical level, the other factors have significant positive effects on carbon emissions, while the technical level has a significant positive impact on carbon emission reduction. The coefficient of economic elasticity is the largest, that is, the change of GDP per capita has the most obvious effect on carbon emissions. In the dynamic panel model, the last period of carbon emissions has a significant path-dependent characteristics of the current period. Population size and economic level were also significantly positive for carbon emissions, but its elastic coefficient decreased. In addition, the economic level is still the largest of several elasticity, and only the population, the economic level of the last period of the value of the current carbon emissions have a significant negative inhibition. Thirdly, the factors affecting carbon emission in three different provinces are decomposed. In the static panel model, the regression results of three types of provincial domain are consistent with the whole. The population elasticity of the first type of provincial model is the largest, and the economic elasticity of the second and the third type of provincial model is the largest. In the dynamic panel model, the regression coefficients of carbon emissions in the lag period are the first (1.129), the third (1.101) and the second (1.087) provincial domains according to the provincial range from large to small. Finally, according to the empirical results, the corresponding carbon emission reduction recommendations for the whole country and three kinds of provinces are put forward. Among them, for the whole country, we should control the excessive growth of population, advocate low carbon living, improve energy efficiency, widely carry out energy conservation work, and introduce the relevant laws and policies on energy consumption to ensure that the policies can be carried out effectively. For all kinds of provinces, category 1 should control population growth and speed up the process of urbanization, category 2 should promote economic growth, speed up the process of urbanization and raise the level of technology, and category 3 should continue to control population growth. Raise the technical level.
【学位授予单位】:江西财经大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X321
【参考文献】
相关期刊论文 前10条
1 曹俊文;曹玲娟;;江西省农业碳排放测算及其影响因素分析[J];生态经济;2016年07期
2 曹玲娟;;城市雾霾与产业结构相关性实证研究——基于动态面板模型GMM估计[J];淮北职业技术学院学报;2016年03期
3 刘长君;;对辽宁省构建碳交易市场的建议[J];经营与管理;2015年01期
4 王永兴;景维民;;中国地下经济的区域发展分化:基于多指标面板数据的聚类分析检验[J];南开经济研究;2014年06期
5 丁胜;温作民;彭玲;;碳排放强度基准在江苏林业主导产业选择中的应用研究[J];生态经济;2014年12期
6 朱永彬;王铮;;排放强度目标下中国最优研发及经济增长路径[J];地理研究;2014年08期
7 刘明达;蒙吉军;刘碧寒;;国内外碳排放核算方法研究进展[J];热带地理;2014年02期
8 彭非;杨娟;谢远涛;;面板数据聚类的有监督学习算法探讨[J];统计与决策;2014年06期
9 任晓松;赵涛;;中国碳排放强度及其影响因素间动态因果关系研究——以扩展型KAYA公式为视角[J];干旱区资源与环境;2014年03期
10 吴振信;石佳;;基于IGT方程的北京地区经济增长与碳排放脱钩特征研究[J];中国市场;2014年04期
相关硕士学位论文 前9条
1 刘露;江苏省城镇化对碳排放影响的研究[D];中国矿业大学;2016年
2 张慧;山东省碳排放的时空演化机理与减排路径研究[D];山东理工大学;2016年
3 高翠云;中国省际碳排放影响因素分析[D];吉林大学;2015年
4 郜兰兰;外资企业出口对我国碳排放的影响研究[D];湖南大学;2014年
5 刘志超;我国二氧化碳排放的区域差异及其影响因素的实证分析[D];暨南大学;2013年
6 沈子琦;江苏省二氧化碳排放的区域差异及影响因素研究[D];南京信息工程大学;2013年
7 杨珍;中国低碳经济发展水平的综合评价[D];辽宁大学;2013年
8 张春燕;气候变暖下的长江三角洲碳排放强度测算及减排政策研究[D];南京信息工程大学;2012年
9 杭银;多指标面板数据的系统聚类分析及其应用[D];浙江工商大学;2012年
,本文编号:2087556
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2087556.html