介质阻挡放电低温等离子体降解水中呋虫胺的研究
[Abstract]:The steady increase of grain and food economy has promoted the rapid development of modern agriculture and brought unprecedented economic benefits to mankind, while the accompanying pesticide economy has brought a huge burden to the natural ecological environment. The production of pesticide industry and the waste water and waste produced by large-scale spraying of finished products have caused indelible damage to the natural environment, among which pesticide wastewater has become the focus of attention. Furoxime has been widely used in agricultural production since it was invented and has become an important member of the nicotine pesticide family. The problem of pesticide wastewater treatment has not been compared with the past, and the traditional treatment process is difficult to achieve the goal, so the advanced oxidation technology which came into being has been highly favored by experts and scholars. In this paper, the problem of pesticide wastewater, which is difficult to be solved by traditional wastewater treatment, is discussed, and a new type of nicotinic pesticide furoxime is used as the target pollutant. The modified titanium dioxide photocatalyst was introduced into the low temperature plasma reaction system of dielectric barrier discharge (DBD), and the self-designed radioflow flow reactor was used to explore the synergistic effect of the two kinds of treatment technologies on furoxime wastewater. Effects of different conditions on furoxime. Lanthanum modified titanium dioxide catalysts with different doping ratios (0% and 10%) were prepared by gel-sol method and characterized by a series of characterizations: X-ray diffraction (XRD) was used to analyze the crystal form of the samples; Scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) were used to analyze the surface distribution and element existence of the samples, and UV-Vis diffuse reflectance spectroscopy (DRS) was used to analyze the absorption range of the samples and to calculate the band gap energy. The modified titanium dioxide was used to degrade furoxime amine solution. According to the treatment conditions and the characterization results, the best doping ratio of lanthanum modified titanium dioxide catalyst was selected. In the presence of the best catalyst, the effects of various conditions on the degradation of furoxime were investigated, such as initial concentration, input power, initial pH, initial conductivity, catalytic ions, hydrogen peroxide and alcohol inhibitors. The experimental results show that the optimum initial concentration and input power are 100 mg/L and 150W, respectively, and the degradation of furoxime can be greatly enhanced in alkaline environment, when pH is increased to 10.5, The low conductivity is favorable to the degradation of pollutants, and the best concentration of Fe2 is 50 mg / L, which can greatly improve the degradation efficiency (99.0%). The catalytic effect of Cu2 is not as good as that of Fe2, and the best concentration of Fe2 is 50 mg 路L ~ (-1) for inhibiting the reaction, and the degradation efficiency (99.0%) of Cu2 is not as good as that of Fe2. The addition of hydrogen peroxide can increase the content of Ho and promote the reaction, and the addition of isopropanol can reduce the degradation efficiency of furoxime, which also proves that Ho plays an irreplaceable role in the reaction. The process of treatment of furosemide belongs to acidification process, the pH of the solution decreases gradually, and finally tends to stabilize, and the conductivity of the solution is always rising, which is related to the decomposition of furoxime. High performance liquid chromatography-mass spectrometry (HPLC / MS) was used to detect the degradation products of furosemide at different intervals. The structure of the intermediate product of furosemide was deduced from the relative molecular weight and related references. The possible degradation pathway of furosemide in low temperature plasma with dielectric barrier discharge (DBD) was further speculated. The experimental results show that the treatment of furoxime wastewater with dielectric barrier discharge and modified titanium dioxide is better than that of single dielectric barrier discharge. For the further development of pesticide wastewater treatment to make some reference significance.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X786
【相似文献】
相关期刊论文 前10条
1 周忠清;沈庆海;;低温等离子体化学——化学的新领域[J];自然杂志;1978年06期
2 裴晋昌;低温等离子体及其在纺织工业中的应用[J];上海纺织科技;1981年10期
3 裴晋昌;;低温等离子体对高分子材料表面的改性[J];化学通报;1982年10期
4 陆全康;低温等离子体的应用[J];自然杂志;1983年04期
5 刘万楹;;低温等离子体及其在有机化学中的应用[J];有机化学;1983年05期
6 洪明苑;低温等离子体中材料表面性能的改变[J];物理;1984年01期
7 颜竹芳;低温等离子体加热技术国内外应用与发展概况[J];电炉;1988年04期
8 吴知非;陈英方;龚俊;;低温等离子体在纺织上的应用[J];自然杂志;1988年09期
9 盖轲,高锦章,胡中爱,王晓艳,刘永军,陆泉芳;低温等离子体在废水降解中的应用[J];甘肃环境研究与监测;2002年01期
10 刘跃旭;王少波;原培胜;赵瀛;;催化型低温等离子体反应器净化废气研究进展[J];化工进展;2009年12期
相关会议论文 前10条
1 郭鹏;张黄伟;陈正;;低温等离子体助燃机理研究[A];中国力学大会——2013论文摘要集[C];2013年
2 苏鹏;王立敏;;低温等离子体技术在纺织品中的应用[A];第八届功能性纺织品及纳米技术研讨会论文集[C];2008年
3 王东辉;白书培;董同欣;宋华;史喜成;;低温等离子体协同催化剂降解苯的研究[A];第五届全国环境催化与环境材料学术会议论文集[C];2007年
4 刘慧;李海蓉;;常压下低温等离子体射频流灭杀大肠杆菌的机理分析[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
5 Akira Mizuno;;低温等离子体在烟气净化中的工业应用(英文)[A];第十一届全国电除尘学术会议论文集[C];2005年
6 李雪梅;袁欣;孟凡英;段忆翔;;新型常压低温等离子体刷技术的研究进展[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
7 王保健;夏连胜;赵君科;陈海燕;毛本将;王亚;;低温等离子体在环保产业中的应用[A];中国工程物理研究院科技年报(1998)[C];1998年
8 方竞;张珏;;低温等离子体在口腔医学领域的应用研究[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
9 杨弼杰;周宁;孙泉华;;低温等离子体流动的非平衡模型及其在自由弧燃烧中的数值应用[A];中国力学大会——2013论文摘要集[C];2013年
10 张灿;刘文君;张明露;;低温等离子体对水中细菌的生物学效应研究进展[A];饮用水安全控制技术会议暨中国土木工程学会水工业分会给水委员会第13届年会论文集[C];2013年
相关重要报纸文章 前3条
1 洛祁;低温等离子体手术刀技高一筹妙手回春[N];大众科技报;2003年
2 郑焕斌;美国发明低温等离子体消毒法[N];科技日报;2003年
3 ;美国发明低温等离子体消毒法[N];今日信息报;2003年
相关博士学位论文 前7条
1 郭俭;低温等离子体杀菌机理与活性水杀菌作用研究[D];浙江大学;2016年
2 李一倬;低温等离子体耦合催化去除挥发性有机物的研究[D];上海交通大学;2015年
3 王卉;低温等离子体协同吸附催化剂的烟气脱硝工艺研究[D];浙江大学;2014年
4 傅鑫;一种基于低温等离子体的流动控制技术研究[D];南京理工大学;2007年
5 俞莺;常压低温等离子体对小鼠伤口定植绿脓杆菌的作用研究[D];华中科技大学;2011年
6 陈杰;吸附催化协同低温等离子体降解有机废气[D];浙江大学;2011年
7 管斌;低温选择性催化还原氮氧化物的基础研究[D];上海交通大学;2012年
相关硕士学位论文 前10条
1 孙芹芹;大气压低温等离子体对大鼠牙髓组织的影响[D];兰州大学;2015年
2 朱海瀛;催化剂成分对低温等离子体降解吸附态甲苯的影响[D];西安建筑科技大学;2015年
3 刘志彬;新型低温等离子体治疗仪的研究与开发[D];郑州大学;2015年
4 郭晓晶;交流驱动低温等离子体点火起爆研究[D];北京理工大学;2015年
5 李虎;低温等离子体协同SCR的烟气脱硝研究[D];大连理工大学;2015年
6 赵业红;直流电晕低温等离子体协同催化降解低浓度挥发性有机废气的研究[D];浙江大学;2016年
7 赵炎鑫;低温等离子体系统设计及应用研究[D];合肥工业大学;2015年
8 曹晓晓;介质阻挡放电低温等离子体脱除烟气NO_x及VOCs实验研究[D];山东大学;2016年
9 周裔R,
本文编号:2149981
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2149981.html