当前位置:主页 > 社科论文 > 生态环境论文 >

秸秆生物炭在废水脱氮中的应用研究

发布时间:2018-09-01 10:22
【摘要】:地表水中氮磷导致的富营养化和地下水硝酸盐超标是环境中的两大问题。对此,本文以秸秆生物炭为吸附剂和碳源,开展了对二级出水和地下水脱氮效果研究。研究内容为秸秆生物炭作为吸附剂对废水中氨氮和硝态氮的吸附效果、生物炭作为反硝化碳源去除二级出水中硝态氮以及地下水中常见离子对生物炭在地下水脱氮应用中的影响。通过一系列的研究得出以下结论:(1)通过颗粒与粉末生物炭对废水中氨氮和硝态氮吸附差异研究,得出颗粒生物炭对氨氮的吸附效果优于粉末生物炭,但两者对硝态氮的吸附不明显,且会产生一定量的NO3--N。粉末生物炭通过FeCl3和CaCl2改性后,可以有效的吸附硝态氮,且FeCl3改性效果优于CaCl2改性效果。(2)未改性的粉末和颗粒生物炭对氨氮吸附的吸附等温线符合Freundich吸附模型;未改性的粉末生物炭对氨氮吸附的吸附动力学符合准二级动力学方程,未改性的颗粒生物炭对氨氮吸附的吸附动力学符合准一级动力学方程。改性后的粉末生物炭对硝态氮吸附的吸附等温线符合Langmuir吸附模型,动力学方程符合准二级动力学方程。(3)改性粉末生物炭对二级出水中的硝态氮(17.5mg/L)、氨氮(5.0mg/L)和总磷(2.9mg/L)有很好的吸附效果。FeCl3改性粉末生物炭对硝态氮、氨氮和总磷的去除率分别为54.40%、31.75%和80.25%,CaCl2改性粉末生物炭对硝态氮、氨氮和总磷的去除率分别为41.18%、26.46%和30.18%。(4)通过从中国矿业大学污水处理站分离得到三种反硝化细菌WS、PYS、YS,且均属于Pseudomonas.,通过反硝化菌反硝化能力实验得出反硝化效果最佳的是PYS。以PYS为反硝化菌,颗粒生物炭为反硝化碳源和填料,应用于二级出水中去除硝态氮的摇床实验和连续实验中,均得到很好的反硝化效果,且无亚硝态氮的累积。(5)通过地下水中常见离子对颗粒生物炭去除地下水硝态氮的影响实验,结果显示离子类型及浓度影响硝酸盐去除的效果。其中,SO42-具有明显的抑制作用,且造成大量的亚硝酸盐累积;Ca2+、Na+、HCO3-均处于促进作用,但浓度越低促进效果越明显;Cl-在高浓度(600 mg/L)时为抑制作用,在低浓度时为促进作用,且浓度越低促进效果越好。
[Abstract]:Eutrophication caused by nitrogen and phosphorus in surface water and nitrate in groundwater are two major problems in the environment. In this paper, the nitrogen removal effect of secondary effluent and groundwater was studied with straw biochar as adsorbent and carbon source. The adsorption effect of straw biochar on ammonia nitrogen and nitrate nitrogen in wastewater was studied. Removal of nitrate nitrogen from secondary effluent by biochar as a carbon source for denitrification and the effects of common ions in groundwater on the application of biochar in denitrification of groundwater. Through a series of studies, the following conclusions are drawn: (1) the adsorption effect of granular biochar on ammonia-nitrogen and nitrate nitrogen in wastewater is better than that of powdered biochar through the study of the difference of adsorption of ammonia nitrogen and nitrate nitrogen between granular and powdered biochar. But the adsorption of nitrate nitrogen is not obvious, and a certain amount of NO3--N. will be produced. After modified by FeCl3 and CaCl2, powder biochar can effectively adsorb nitrate nitrogen, and the modification effect of FeCl3 is better than that of CaCl2. (2) the adsorption isotherm of ammonia nitrogen adsorbed by unmodified powder and granular biochar accords with Freundich adsorption model. The adsorption kinetics of unmodified powder biochar accords with quasi second order kinetic equation, while that of unmodified granular biochar accords with quasi first order kinetic equation. The adsorption isotherm of the modified powder biochar for nitrate nitrogen is in accordance with the Langmuir adsorption model. The kinetic equation accords with the quasi second-order kinetic equation. (3) modified powdered biochar has a good adsorption effect on nitrate nitrogen (17.5mg/L), ammonia nitrogen (5.0mg/L) and total phosphorus (2.9mg/L) in secondary effluent. The removal rates of ammonia nitrogen and total phosphorus were 54.40% and 80.25% respectively. The removal rates of ammonia nitrogen and total phosphorus were 41.18% and 30.18% respectively. (4) three denitrifying bacteria (WS,PYS,YS,) were isolated from wastewater treatment station of China University of Mining and Technology and all belong to Pseudomonas.,. Through denitrification ability experiment of denitrifying bacteria, the best denitrification effect was obtained by PYS.. Using PYS as denitrifying bacteria and granular biochar as carbon source and filler for denitrification, a good denitrification effect was obtained in the shaking bed experiment and continuous experiment of removing nitrate nitrogen in secondary effluent. And no accumulation of nitrite nitrogen. (5) the effects of common ions in groundwater on the removal of nitrate nitrogen from groundwater by granular biochar were studied. The results showed that the type and concentration of ions affected the effect of nitrate removal. So _ 42- had obvious inhibitory effect, and caused a large amount of nitrite to accumulate Ca ~ (2 +) ~ (2 +) Na ~ (2 +) HCO3-, but the lower the concentration, the more obvious the inhibitory effect was at high concentration (600 mg/L), and the latter at low concentration. And the lower the concentration, the better the promotion effect.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703

【参考文献】

相关期刊论文 前10条

1 陈靖;李伟民;丁文川;王欣悦;胡崇亮;;Fe/Mg负载改性竹炭去除水中的氨氮[J];环境工程学报;2015年11期

2 孙丽丽;李文英;李夏;卢钰升;解开治;顾文杰;蒋瑞萍;;固废生物炭净化处理猪场废水研究初探[J];中国农学通报;2015年23期

3 张璐;贾丽;陆文龙;徐聪珑;张文卿;谢忠雷;;不同碳化温度下玉米秸秆生物炭的结构性质及其对氮磷的吸附特性[J];吉林大学学报(理学版);2015年04期

4 马锋锋;赵保卫;刁静茹;钟金魁;李安邦;;牛粪生物炭对水中氨氮的吸附特性[J];环境科学;2015年05期

5 杨碧印;李文龙;许仕荣;陈益清;尹娟;;不同外加碳源反硝化滤池的挂膜与启动特性研究[J];水处理技术;2015年04期

6 李飞跃;谢越;石磊;李孝良;李粉茹;汪建飞;;稻壳生物质炭对水中氨氮的吸附[J];环境工程学报;2015年03期

7 时晓旭;王聪;高梦柯;;生物炭对沼液中氨氮的吸附效果研究[J];农业科技与装备;2015年02期

8 梁捷;缪恒锋;任洪艳;赵明星;黄振兴;阮文权;;以聚己内酯作为生物反硝化固体碳源的研究[J];环境工程学报;2015年02期

9 张志高;王志春;王春云;耿安红;荣耀宗;吴承东;;农业废弃物资源分类及利用技术[J];农技服务;2015年01期

10 李丽;陈旭;吴丹;王爱丽;杨柳燕;;固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J];农业环境科学学报;2015年01期

相关博士学位论文 前1条

1 杨翠云;微囊藻毒素对微生物的生理生态学效应[D];中国科学院研究生院(水生生物研究所);2007年

相关硕士学位论文 前6条

1 车莉;农作物秸秆资源量估算、分布与利用潜力研究[D];大连理工大学;2014年

2 廖艳妮;生物质灰渣的农业化学行为研究[D];西南大学;2013年

3 唐蕾;基于缓释碳源的城镇污水二级出水深度反硝化脱氮试验研究[D];河北科技大学;2013年

4 李际会;改性生物炭吸附硝酸盐和磷酸盐研究[D];中国农业科学院;2012年

5 徐佩;外加碳源生物滤池处理城市污水厂尾水脱氮试验研究[D];武汉科技大学;2011年

6 李栋;固定化细胞膜生物反应器脱除地下水中硝酸盐的研究[D];华东理工大学;2011年



本文编号:2216903

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2216903.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户aa7af***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com