当前位置:主页 > 社科论文 > 生态环境论文 >

高炉矿渣-粉煤灰地聚合物胶凝材料固化砷钙渣

发布时间:2018-10-22 13:28
【摘要】:以高炉矿渣、粉煤灰为地聚合物胶凝材料原料,配合复合化学激发剂固化砷钙渣,并采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)探究固砷机理。研究结果表明,固化体优选质量配比为高炉矿渣粉∶粉煤灰∶砷钙渣=4∶2∶4,配合1.5%~2.0%的NaOH和工业水玻璃复合化学激发剂,固化体砷浸出浓度0.5~0.9mg/L,低于危险废物浸出毒性鉴别标准限值(5mg/L)。XRD、FTIR和SEM结果表明,砷钙渣经高炉矿渣-粉煤灰地聚合物胶凝材料固化,反应体系液相环境pH13,促使砷钙渣中的含砷矿物CaHAsO_4·3H_2O向更加稳定的Ca_5(AsO_4)_3OH及类质同象物Ca_5(AsO_4)_3(OH,F)转变。同时地聚合物胶凝材料水化产生的网络状水化凝胶可把砷钙渣中的各组分胶结在一起有效抑制固化体中砷的溶出。可见,高炉矿渣-粉煤灰地聚合物胶凝材料可作为固化含砷渣的一种潜在固结剂。
[Abstract]:The mechanism of arsenic fixation was investigated by using blast furnace slag and fly ash as raw materials of polymer cementitious material and combined with compound chemical activator to solidify arsenic calcium slag. X-ray diffraction (XRD) (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the mechanism of arsenic fixation. The results show that the optimum mass ratio of solidified body is blast furnace slag powder: fly ash: arsenic calcium slag = 4: 2: 4, with 1.5% NaOH and industrial water glass compound chemical activator. The arsenic leaching concentration of the solidified body was 0.5 ~ 0.9mg / L, which was lower than the limit of hazardous waste leaching toxicity (5mg/L). The results of XRD,FTIR and SEM showed that the arsenic calcium slag was solidified by blast furnace slag and fly ash geopolymer cementitious material. The liquid phase environment pH13, of the reaction system promoted the transformation of the arsenic-bearing mineral CaHAsO_4 3H_2O from arsenic calcium slag to a more stable Ca_5 (AsO_4) _ 3OH and Ca_5 (AsO_4) _ 3 (OH,F). At the same time, the network hydration gel produced by the hydration of geopolymer cementitious materials can effectively inhibit the dissolution of arsenic from the solidified body by cementing each component of arsenic calcium residue together. Therefore, blast furnace slag-fly ash geopolymer cementitious material can be used as a potential consolidation agent for solidifying arsenic-bearing slag.
【作者单位】: 昆明理工大学环境科学与工程学院;西南林业大学理学院;昆明理工大学化学工程学院;昆明理工大学非常规冶金教育部重点实验室;
【基金】:NSFC-云南联合基金(U1137604) 云铜校企预研基金2015YT08) 昆明理工大学引进人才科研启动基金(KKSY201605021) 昆明理工大学分析测试基金(2016T20160009)项目
【分类号】:X705

【相似文献】

相关期刊论文 前10条

1 顾文飞;宝钢高炉重矿渣的应用研究[J];粉煤灰;1994年04期

2 于明兴;刘敬东;郭玉安;王志清;;安钢高炉矿渣利用途径探讨[J];河南冶金;2014年01期

3 乔永爱;;高炉矿渣在路堤填筑中的应用[J];山西科技;2008年01期

4 C.A.米罗诺夫 ,李家仁;萃取法测定水泥中高炉矿渣的含量[J];云南建材;1982年02期

5 吴少华;高炉矿渣自然养护工艺探讨[J];硅酸盐建筑制品;1995年01期

6 燕开文;马海涛;;高炉矿渣环保综合利用新途径[J];山西冶金;2009年06期

7 陈d澥,

本文编号:2287283


资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2287283.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户21a79***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com