基于环境基尼系数的控制单元水污染负荷分配优化研究
发布时间:2018-10-25 17:41
【摘要】:将基尼系数这一福利经济学概念引入松花江流域水污染物负荷分配过程,综合考虑水循环的社会-经济-资源-环境因素,从社会经济发展、科技进步水平、水污染治理水平和资源禀赋差异角度出发,遴选出人均GDP、重污染行业总产值比重、人均水污染物产生强度、工业水污染物去除率、生活水污染物去除率、单位国土面积水资源量、国控劣Ⅴ类断面占比7项指标,以COD及NH_3-N负荷为控制因子,辅以贡献系数这一表征外部不公平性参数,构建了以基尼系数为度量标准的流域水污染负荷优化分配模型,并据此制订了松花江流域33个控制单元基于公平性的水污染负荷分配方案。研究表明,2012年松花江流域基于7项指标的基尼系数值均大于0.4,超过了基尼系数合理警戒线,说明流域控制单元间COD及NH_3-N排放在社会经济和资源环境方面存在不公平现象,其中松花江干流和第二松花江流域是不公平性特征最为突出的两个流域。在Lingo模型优化分配得到的2020年流域各单元COD削减方案中,单元21的年削减量最大,为1.82万t/a,单元10的年均削减率最高,达8%;在相应NH_3-N削减方案中,单元21的年削减量及削减率均为最大,分别达到0.08万t/a及8%。
[Abstract]:This paper introduces the concept of Gini coefficient into the process of water pollutant load distribution in Songhua River basin, and synthetically considers the social-economic-resources-environment factors of water cycle, from the social economic development and the level of scientific and technological progress. From the angle of water pollution treatment level and resource endowment difference, the ratio of gross output value of per capita GDP, heavy pollution industry, the per capita water pollutant production intensity, the removal rate of industrial water pollutant, the removal rate of domestic water pollutant are selected. There are 7 indexes of water resources per unit land area, the proportion of state-controlled inferior class V section, COD and NH_3-N load as control factors, and contribution coefficient as a parameter to characterize the external unfairness. A water pollution load optimal distribution model based on Gini coefficient is constructed and a water pollution load distribution scheme based on equity for 33 control units in Songhua River basin is developed. The research shows that the Gini coefficient of Songhua River basin based on seven indexes is more than 0.4 in 2012, which exceeds the reasonable warning line of Gini coefficient, which indicates that the COD and NH_3-N emissions between control units in the basin are not fair in the aspects of social economy and resources and environment. Among them, the main Songhua River and the second Songhua River are the two most prominent unfairness. In the optimal allocation of Lingo model in 2020, the annual reduction of unit 21 is the largest, which is 18200 t / a, and the annual reduction rate of unit 10 is the highest, up to 8%, among the corresponding NH_3-N reduction schemes, The annual reduction and reduction rate of unit 21 are the largest, reaching 800 t / a and 8 t / a respectively.
【作者单位】: 环境保护部环境规划院国家环境保护环境规划与政策模拟重点实验室;南京大学环境学院污染控制与资源化研究国家重点实验室;中国地质大学(北京)水资源与环境学院;华北电力大学可再生能源学院;
【基金】:国家水体污染治理与控制科技重大专项“流域水污染防治规划决策支持平台研究”(批准号:2012ZX07601002)
【分类号】:X52
本文编号:2294366
[Abstract]:This paper introduces the concept of Gini coefficient into the process of water pollutant load distribution in Songhua River basin, and synthetically considers the social-economic-resources-environment factors of water cycle, from the social economic development and the level of scientific and technological progress. From the angle of water pollution treatment level and resource endowment difference, the ratio of gross output value of per capita GDP, heavy pollution industry, the per capita water pollutant production intensity, the removal rate of industrial water pollutant, the removal rate of domestic water pollutant are selected. There are 7 indexes of water resources per unit land area, the proportion of state-controlled inferior class V section, COD and NH_3-N load as control factors, and contribution coefficient as a parameter to characterize the external unfairness. A water pollution load optimal distribution model based on Gini coefficient is constructed and a water pollution load distribution scheme based on equity for 33 control units in Songhua River basin is developed. The research shows that the Gini coefficient of Songhua River basin based on seven indexes is more than 0.4 in 2012, which exceeds the reasonable warning line of Gini coefficient, which indicates that the COD and NH_3-N emissions between control units in the basin are not fair in the aspects of social economy and resources and environment. Among them, the main Songhua River and the second Songhua River are the two most prominent unfairness. In the optimal allocation of Lingo model in 2020, the annual reduction of unit 21 is the largest, which is 18200 t / a, and the annual reduction rate of unit 10 is the highest, up to 8%, among the corresponding NH_3-N reduction schemes, The annual reduction and reduction rate of unit 21 are the largest, reaching 800 t / a and 8 t / a respectively.
【作者单位】: 环境保护部环境规划院国家环境保护环境规划与政策模拟重点实验室;南京大学环境学院污染控制与资源化研究国家重点实验室;中国地质大学(北京)水资源与环境学院;华北电力大学可再生能源学院;
【基金】:国家水体污染治理与控制科技重大专项“流域水污染防治规划决策支持平台研究”(批准号:2012ZX07601002)
【分类号】:X52
【相似文献】
相关期刊论文 前10条
1 宋振阳;李斌;;太原市资源环境基尼系数研究[J];山西化工;2013年04期
2 黄和平;;基于多角度基尼系数的江西省资源环境公平性研究[J];生态学报;2012年20期
3 王丽琼;;基于公平性的水污染物总量分配基尼系数分析[J];生态环境;2008年05期
4 叶春燕;谷晋川;;基尼系数法在水污染物总量分配中的应用[J];西华大学学报(自然科学版);2010年06期
5 滕飞;何建坤;潘勋章;张弛;;碳公平的测度:基于人均历史累计排放的碳基尼系数[J];气候变化研究进展;2010年06期
6 田平;方晓波;王飞儿;朱瑶;;基于环境基尼系数最小化模型的水污染物总量分配优化——以张家港平原水网区为例[J];中国环境科学;2014年03期
7 樊华;陈然;;基尼系数法在水污染物总量分配中的应用[J];安徽农业科学;2009年24期
8 杨芳;;基于基尼系数法的九龙江流域水污染物排放总量分配研究[J];环境科学与管理;2012年05期
9 王金南;逯元堂;周劲松;李勇;曹东;;基于GDP的中国资源环境基尼系数分析[J];中国环境科学;2006年01期
10 吴丽君;杨三明;;基尼系数在重庆市SO_2总量分配中的应用[J];三峡环境与生态;2011年03期
相关硕士学位论文 前2条
1 杨瑞;基于环境基尼系数法的陕西省二氧化硫总量分配研究[D];西北大学;2016年
2 舒琨;水污染负荷分配理论模型与方法研究[D];合肥工业大学;2010年
,本文编号:2294366
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2294366.html