当前位置:主页 > 社科论文 > 生态环境论文 >

钯负载型稀燃NO_x存储还原催化剂的制备及性能研究

发布时间:2019-02-14 07:24
【摘要】:稀薄燃烧技术是近几十年提出的一种有效的机内净化技术。稀燃发动机具有燃油经济性好、燃烧效率高的特点,但由于较高的空燃比导致尾气中NO_x含量升高且不易去除,NO_x已成为稀燃机动车尾气中的主要污染物。NO_x存储/还原(NSR)技术被认为是稀燃发动机去除NO_x的最有效的方法之一,其中高活性的NSR催化剂是技术的关键。传统的NSR催化剂Pt-BaO/Al2O3成本高,低温活性和稳定性较差,因此有必要开发更加经济高效的NSR催化剂。本文以组成可调变的类水滑石层状纳米材料为催化剂前驱物,制备出多活性位点、高分散的系列CuMgAlFe介孔复合氧化物以及贵金属负载的系列Pd-K/CuMgAlFe新型NSR催化剂,采用XRD、BET、FT-IR、SEM、H_2-TPR等现代表征手段研究催化剂的晶相结构、表面性质、微观形貌、孔结构特性和氧化还原能力等理化性质,通过恒温静态NO_x吸/脱附、贫富燃循环动态实验测试催化剂NO_x的存储还原活性,利用原位红外技术研究NO_x在催化剂表面的吸附物种和存储路径。主要工作和研究结果如下。采用共沉淀法制得过渡金属Cu和Fe部分取代的类水滑石前驱物,通过焙烧获得了以MgO为主晶相的介孔复合氧化物催化剂(CuMgAl、MgAlFe和CuMgAlFe)。该体系催化剂具有较高比表面积(160~180 m~2·g~(-1)),CuMgAl和CuMgAlFe催化剂表现出较高的氧化还原性能。Cu和Fe双掺杂提高了催化剂的NO_x存储能力,这与材料表面Cu物种和Fe物种的强相互作用有关,CuMgAlFe催化剂在300oC恒温静态吸附NO_x时NO_x存储量为216μmol·g-1。在CuMgAlFe催化剂上,NO_x存储有两种路径: 亚硝酸盐路径‖和 硝酸盐‖路径。 亚硝酸盐路径‖:NO与Mg(Al)O载体上的碱性氧反应生成亚硝酸盐,随后亚硝酸盐被进一步氧化成硝酸盐; 硝酸盐‖路径:NO在过渡金属位点被氧化成NO_2,随后溢流到临近的Mg位点形成硝酸盐。以类水滑石为前驱物,制备了贵金属Pd负载的介孔复合氧化物催化剂(MgAl、PdMgAl和PdCuMgAl)。与MgAl样品相比,Pd和Cu引入类水滑石层结构大大提高了衍生复合氧化物催化剂的比表面积(160~190 m~2·g~(-1))和孔体积,这有助于反应过程中气体分子的扩散,也有利于PdO和CuO活性物种的分散;Pd和Cu同时负载对催化剂氧化还原能力的提升具有协同作用。Pd负载后提高了催化剂NO_x的存储能力,这与孔结构性质的改善和氧化还原能力的提高有关。原位红外研究发现,300oC恒温静态吸附NO_x时,在MgAl催化剂上,NO_x全部以亚硝酸盐的形式储存,而在PdMgAl和PdCuMgAl催化剂上,硝酸盐的存储更占优势。在PdMgAl催化剂上,NO_x存储遵循亚硝酸盐路径,而PdCuMgAl催化剂上,NO_x存储则遵循硝酸盐路径,表明Pd和Cu的相互作用增强了催化剂的氧化还原能力和存储能力。以CuMgAlFe复合氧化物为载体,通过浸渍法制备了Pd和K负载的多活性位点、高分散系列新型NSR催化剂(Pd/CuMgAlFe、K/CuMgAlFe和Pd-K/CuMgAlFe)。研究表明所有催化剂呈现MgO晶相,Pd和K共负载提高了表面PdO物种的可还原性。NO_x吸脱附实验表明,K负载后提高了催化剂的NO_x存储能力和存储硝酸盐物种的稳定性,Pd-K/CuMgAlFe的NO_x存储能力可达1766μmol·g-1。Pd和K共负载对增强NSR催化剂NO_x存储能力具有协同作用,这可能与材料氧化还原性能的提高和碱性的改善有关。原位红外表征发现NO_x在CuMgAl Fe和Pd/CuMgAlFe催化剂上存储遵循亚硝酸盐路线,最终存储物种为硝酸盐;K/CuMgAlFe催化剂上NO_x以大量亚硝酸盐和硝酸盐的形式存储;Pd-K/CuMgAl Fe催化剂上,Pd和K共负载促进了表面亚硝酸盐的分解。模拟汽车尾气气氛,在贫燃(120 s)和富燃(60 s)循环交替的动态条件下研究了催化剂的NSR性能,结果表明K/CuMgAlFe、Pd-K/Cu MgAlFe催化剂的NO_x去除率较高:150oC时NO_x平均去除率在70%左右,300oC和450oC时去除率均在85%以上。
[Abstract]:The lean combustion technology is a kind of effective internal purification technology that has been put forward in recent decades. The lean-burn engine has the characteristics of good fuel economy and high combustion efficiency, but because of higher air-to-air ratio, the content of NO _ x in the tail gas is increased and is not easy to be removed, and the NO _ x has become the main pollutant in the tail gas of the lean-combustion motor vehicle. The NO _ x storage/ reduction (NSR) technique is considered one of the most efficient methods for the removal of NO _ x from a lean burn engine, where the high activity NSR catalyst is the key to the technology. The traditional NSR catalyst Pt-BaO/ Al2O3 is high in cost, low in low-temperature activity and poor in stability, and therefore it is necessary to develop a more economical and efficient NSR catalyst. In this paper, a series of Pd-K/ CuMgAlFe-based NSR catalysts with a multi-active site, a high-dispersion series of CuMgAlFe mesoporous composite oxides and a noble metal load are prepared by using a composition-adjustable hydrotalcite-like layered nano-material as a catalyst precursor. The novel NSR catalyst is characterized by XRD, BET, FT-IR and SEM. The crystal phase structure, surface property, micro-morphology, pore structure and oxidation-reduction ability of the catalyst were studied by the modern characterization means such as H _ 2-TPR and the like, and the storage and reduction activity of the catalyst NO _ x was tested by the constant temperature static NO _ x suction/ desorption, the rich and poor combustion cycle dynamic experiment. The adsorption species and storage path of NO _ x on the surface of the catalyst were studied by in-situ IR technology. The main work and study results are as follows. A composite oxide catalyst (CuMgAl, MgAlFe and CuMgAlFe) with MgO as the main crystal phase was obtained by co-precipitation. The catalyst has a higher specific surface area (160 ~ 180 m ~ 2 路 g ~ (-1)), and the CuMgAl and CuMgAlFe catalysts show high redox properties. Cu and Fe double doping increase the NO _ x storage capacity of the catalyst, which is related to the strong interaction of the Cu species and the Fe species on the surface of the material. The amount of NO _ x stored at the constant temperature static adsorption of NO _ x at the constant temperature of 300oC is 216 & mu; mol 路 g-1. 鍦–uMgAlFe鍌寲鍓備笂,NO_x瀛樺偍鏈変袱绉嶈矾寰,

本文编号:2421968

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2421968.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4af3a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com