高炉粉尘再资源化应用基础研究
发布时间:2020-06-01 10:07
【摘要】:炼铁高炉除尘灰简称高炉粉尘,其生成量约为铁产量的4%,且粒度细小,其中低锌粉尘可直接返回烧结利用,含锌量较高的粉尘不能直接返回烧结,成为巨量污染环境的固体废弃物,目前尚未有得到广泛应用的再资源化处理技术。 本论文就唐钢炼铁部北区进行了现场调研、取样,在其2#高炉(2000m3)和3#高炉(3200m3)的分别各取约3kg瓦斯灰样品和瓦斯泥样品。进行基础特性研究得出:粉尘粒度为微米级,平均为20μm;其Zn、Fe含量波动较大,含Fe:25~50%, Zn:0.1~5%, C:15~25%,存在形式主要为Fe2O3,Fe3O4, ZnFe2O4。 论文对铁、锌氧化物的还原进行了热力学研究,指出:铁,锌氧化物均有可能在较低温度下被还原;进而的气-固还原宏观动力学研究指出:微米级颗粒铁氧化物的还原速率远远大于厘米级球块,这种效应称为“精细还原效应”。还原动力学实验结果显示其控制性环节为界面化学反应,表观活化能为69.8kJ/mol。 本论文根据“精细还原效应”进行了实验室实验。自制精细还原装置,还原粉尘10g,纯H2、900~1000℃、2~4h,共实验32炉次,所得富铁余料不发生烧结,铁的金属化率平均91.02%,脱锌率平均96.14%;挥发物中Zn得到富集。 论文进行了精细还原的反应工程学研究,设计和制造一台小型工业实验炉,粉尘的处理量为0.6kg/h,工程学特点为“气固逆流连续反应器”。在唐钢炼铁部北区1号高炉TRT车间附近进行小型工业实验,共计冷态实验54炉次、热态实验37炉次。使用经神木兰炭在1050~1100℃重整后的唐钢高炉为还原剂,900~1000℃、还原10-50min,所得富铁余料中铁的金属化率最佳达88%,脱锌率最佳达95%,富锌挥发物ZnO含量可达83%。 论文还进行了实验室浮选实,结果:浮选产物中碳含量有所增加,为30.4%-73.9%,碳收得率不高,为19.62%~56.24%,且未能达到很好的Zn、Fe富集效果。论文也进行了富铁余料的磁选实验:所得强磁物质中铁品位为32.1~44.8%,铁的收得率为6.78~90.90%,铁品位高者铁的收得率低。 富铁余料配加CaO用于炼钢,其铁的回收率平均68.3%,无脱硫效果;瓦斯灰配加CaO用于炼铁,其铁的回收率平均93.6%,无脱磷效果。 本论文采取的高炉粉尘精细还原再资源化方案,所得到的富铁余料和富锌挥发物都是具有价值的物料,并且全程不产生二次固体废弃物,是高炉粉尘再资源化利用的创新性探索。
【图文】:
石为原料的高炉炼铁和转炉(电炉)炼钢联合工艺流程。我国钢铁生产流程主要为后两者工艺流程组成(见图2-2),且以高炉和转炉(电炉)联合工艺为主导地位。-2-
的大型高炉也在不断建设,我国高炉炼铁产量不断增加。高炉炼铁生产工艺流程及设备示意如图2-3所示,工艺流程主要包括以下几个系统[9]。,
本文编号:2691322
【图文】:
石为原料的高炉炼铁和转炉(电炉)炼钢联合工艺流程。我国钢铁生产流程主要为后两者工艺流程组成(见图2-2),且以高炉和转炉(电炉)联合工艺为主导地位。-2-
的大型高炉也在不断建设,我国高炉炼铁产量不断增加。高炉炼铁生产工艺流程及设备示意如图2-3所示,工艺流程主要包括以下几个系统[9]。,
本文编号:2691322
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2691322.html