当前位置:主页 > 社科论文 > 生态环境论文 >

深海高效除镉菌株对磷镉去除的相互作用及其生物学机制

发布时间:2020-10-31 18:42
   近年来工业废水排放、磷肥施用以及矿山开采引起的镉污染日益严重。镉作为一种剧毒的重金属元素,由于其不可降解,进入食物链后会在生物体内富集而造成严重的健康和生态危害。自然界中,磷和镉的分布具有一定相关性,海水中镉和磷之间的关系是双线性的,磷矿中镉通常会以0.1-60 mg/kg的浓度伴生存在;生产中,由于有色金属矿床和磷矿的开采以及含镉磷肥的施用使含镉废水中含有浓度不等的磷。另外,磷资源属于不可再生类,据估计全球可开采的磷矿将在60-130年内耗尽。因此,污水中的磷回收以及磷镉的同时去除在磷资源保护和镉污染防理中具有重要意义。微生物作为元素循环和物质传递的中间环节,在磷镉循环以及磷的矿化中发挥着重要作用。文献报道的能够实现磷镉的同时去除的微生物种类较少,种属不明确。Pseudoalteromonas sp.SCSE709-6(P.sp.SCSE709-6)是分离自中国南海的一株高效除镉海洋菌,前期研究发现P.sp.SCSE709-6能实现磷镉的同时去除;但是磷镉同步去除过程中,其作用机理和生物学机制尚不明确。基于以上研究背景,本课题首先研究了菌株P.sp.SCSE709-6的除磷效能及其应用;进一步分析了不同磷镉浓度对P.sp.SCSE709-6的生理生化特性及磷镉去除效能的影响;解析了同步去除过程中磷镉的迁移转化和P.sp.SCSE709-6的生物学机制。本论文主要研究工作及重要结论包括以下几个部分:(1)P.sp.SCSE709-6的环境适应能力以及除磷能力强,去除的磷主要以有机磷形式(磷酸单脂和磷酸双脂)分布在胞内和胞外聚合物上,P.sp.SCSE709-6的接种强化了系统对碳磷的去除能力,增加了微生物群落结构的相似性。P.sp.SCSE709-6,能够在初始磷浓度1-40 mg/L、盐度为1%-10%、pH为5-8.5、C/N比为15-20以及温度为15-30℃的条件下良好生长并实现高效除磷,最多除磷30 mg/L左右,该菌环境适应能力强,除磷效果好。除磷过程中正磷酸盐逐渐同化吸收转化为有机磷,有机磷以磷酸单脂和磷酸双脂形式存在,占总磷的92.82%-95.54%。去除的磷主要分布在胞内和EPS上,其百分比分别为41.3%和50.6%。SMT提取结果显示,菌体中的磷主要以易于迁移和可生物利用的磷形式(有机磷OP和非磷灰石磷NAIP)存在,其占比高达97.1%。批次实验中,P.sp.SCSE709-6处理含盐黑水的最大COD、TP和TN去除率分别为96%、83%和50%左右。在船上的半连续实验中,接种了P.sp.SCSE709-6的系统T3具有最佳的COD去除率(99.8%);T3和T4(接种P.sp.SCSE709-6进行强化的两个系统)均具有良好的脱磷能力(去除率分别为80.9%和88.4%)。T3和T4之间的β多样性指数中的未加权unifrac距离最小(0.368),表明T3和T4之间存在最小的群落差异。(2)镉胁迫下细菌形态变粗变短,磷能缓解镉对P.sp.SCSE709-6生长的抑制作用,P.sp.SCSE709-6对镉的去除速率随磷浓度增加而提高,磷的增加有利于细菌对镉的抵抗。通过原子力显微镜观察发现,磷浓度为9 mg/L的无镉污水中P.sp.SCSE709-6的菌体形态呈细长的杆状,细菌的长度约为2 μm,宽度约为1 μμm;随着镉浓度逐渐增加,P.sp.SCSE709-6的菌体形态变短变粗,并且其周围聚集着一些纳米颗粒,随着磷浓度的增加,细菌形态受镉影响的程度变小。磷能减轻镉对细菌生长的抑制作用,污水的pH值先降低后增加至7.5-8.4,P.sp.SCSE709-6能自主调节污水pH至弱碱性。随着镉浓度或磷浓度的增加,EPS中蛋白多糖的含量逐渐增加;磷的增加有利于细菌对镉的抵抗。三维荧光光谱结果显示,随着镉或磷浓度的增加,EPS中芳香类蛋白质的结构发生变化,腐殖酸类的峰消失,出现新的富里酸峰。芳香类蛋白质的羧基、羰基、羟基、氨基官能团含量增加,使D峰出现红移。热重分析表明镉和磷的增加使菌体的失重温度降低,增加了菌体的可燃性,有利于处理污水后的菌体的脱水。随着镉浓度的增加,P.sp.SCSE709-6的除磷除镉速率均有所降低;当镉浓度为1-10 mg/L时,24 h内能实现磷镉的完全去除,当镉浓度大于12 mg/L时,对磷镉的最大去除率均有所降低。随着磷浓度的增加,P.sp.SCSE709-6对镉的去除速率增加,说明磷的存在有利于该菌对镉的去除。(3)高镉使P.sp.SCSE709-6菌体中总镉以可交换的镉形态增加,高磷能降低菌体中总镉含量,使镉更多的积累在EPS中以及可交换态镉的含量降低,减轻镉的毒性;含镉污水中,细菌生成Cd-S-P纳米颗粒。随着时间的增加,磷由EPS中转移到胞内,胞内的镉先增加后减少。随着磷浓度的增加,P.sp.SCSE709-6菌体中的磷更多的积累在EPS,镉积累的主要部位由细胞膜变成了 EPS。磷镉浓度的变化并未改变菌体中主要的磷形式(单脂、双脂和正磷酸盐)。随着镉浓度的增加,菌体中的镉含量显著增加,并且可交换态的镉增量最大,镉的直接毒性增加;随着磷浓度的增加,菌体中总镉含量有少量降低,可交换态镉的含量降低,可还原态镉的含量增加,表明磷能缓解镉的直接毒性,镉形态由不稳定变为稳定。污水中含镉时,细菌周围出现了纳米颗粒,并且镉浓度越大,颗粒聚集得越多。提取后的纳米颗粒聚集在一起,其由很多直径约为30 nm的圆形颗粒组成,其碳含量较高(87.8%),说明该颗粒中主要为有机物,镉的占比为2.8%,硫的占比为2.9%,磷的占比为0.2%。对聚集纳米颗粒中的一个圆形颗粒放大,发现其具有明显的晶型和无定形性质,由直径为2-3 nm的纳米晶组成,纳米晶的晶面间距为0.305 nm。通过XPS测定,纳米颗粒的Cd3d精细谱图发现镉主要以Cd-S以及O-Cd-O方式与硫和氧结合,EPS的S2p谱图显示其主要为S2'形态,P2p谱图显示磷主要以P043-,P-O-P方式结合。(4)镉的存在影响了P.sp.SCSE709-6对磷的直接吸收,镉使肌醇磷酸代谢和磷酸戊糖途径中的多种酶下调表达,并影响三羧酸循环和糖酵解途径中的一些酶活性,从而影响P.sp.SCSE709-6的磷代谢。差异表达基因中显著富集的GO-term主要有细胞外膜、外部封装结构、细胞包膜、铜离子和银离子的跨膜运输、氨基酸合成和代谢过程、羧酸生物合成和有机酸生物合成。差异表达基因的KEGG分析发现,有磷时,镉胁迫条件下,菌体内差异基因主要富集在精氨酸生物合成(Arginine biosynthesis)、氨基酸的生物合成(Biosynthesis of amino acids)、半胱氨酸和蛋氨酸代谢(Cysteine and methionine metabolism)、肌醇磷酸代谢(Inositol phosphate metabolism)。当污水中镉浓度增加时,谷胱甘肽产量略有升高,胞内碱性磷酸酶的活性增加。而当磷浓度增加时,谷胱甘肽的浓度随之稍微降低,胞内碱性磷酸酶的活性减少,环境中磷的增加使细菌可利用的磷增加,无需过多分解胞内存储的磷。明确了P.sp.SCSE709-6的抗镉机制。(ⅰ)通过细胞膜相关基因下调表达以及EPS的吸附作用,阻止镉离子内流;(ⅱ)胞内含硫蛋白质合成的上调表达,镉与含硫蛋白质和含磷有机物结合以达到细胞内部的隔离作用和解毒作用;(ⅲ)通过钴/锌/镉外排RND转运蛋白、铅/镉/锌/汞转运ATP酶、钴/锌/镉抗性蛋白CzcA、膜融合蛋白CzcB和阳离子外排系统蛋白CusA的上调表达,促进镉离子外排。综上,P.sp.SCSE709-6应用于含磷污水的处理,实现磷去除的同时将磷以生物可利用的形式储存在菌体内,对磷资源的再利用具有重要意义。不同磷镉浓度下P.sp.SCSE709-6的生理生化特性和磷镉去除效能以及P.sp.SCSE709-6对磷镉的同时去除过程中,磷镉的迁移转化为该菌应用于磷镉的同时去除提供了有利的理论基础和数据支撑。磷镉的同时去除实现了有毒有害污染物的高效低成本去除,具有重要的环境、生态和经济效益。此外,磷镉作用下P.sp.SCSE709-6的生物学机制探究,有利于理解海洋环境及磷矿中磷镉的相关性,揭示该菌在环境中的生态意义。
【学位单位】:山东大学
【学位级别】:博士
【学位年份】:2019
【中图分类】:X703;X172
【部分图文】:

溶解性,相关性,数据,再矿化


形成于海洋中,而在海水体系中,溶解性磷酸盐也与镉存在一定的相关性。??1.1.2海水中的磷镉相关性??镉和磷(P〇43-)之间的关系明显是双线性的,如图1-1所示在卩〇43_浓度??约为1.3?nmol/kg时,从图〗-2中可以看出具有“扭结”(kink),即存在直线斜率??的变化[1Q]。“扭结”左侧的数据(即P〇43_<1.3?pmol/kg)通常来自表层水和相对??年轻的北大西洋深水,而Cd-?P〇43?线性回归倾向于通过坐标轴的原点。“扭结”??右侧的数据(即P〇43*>1.3Mmol/kg)来自印度洋、太平洋和南部海洋的深水(深??度超过1000?m)?^1。“扭结”右侧的线性回归具有非零截距,即在零Cd处存在??“剩余”P〇43?。这种非零截距导致溶解的Cd/POf比随这些元素浓度的增加而增??力口。由于这些营养元素的浓度随着水体年龄的増长而增加,较老的水体将具有较??高的Cd/PO,比。??Cd和P043?的分布是水平和垂直混合过程相互作用的结果,也与具有可变镉??磷比例的生物颗粒输出和再矿化有关。深海Cd-P043?关系的斜率取决于水团的起??源、水团混合、再矿化和再矿化生物量的镉磷比值,这些因素可能随时间而变化??[1|]

蛋白质,胞外多糖,镉离子,机制


1.4微生物对镉的抗性和解毒机制??微生物镉抗性是指在高镉浓度环境下,微生物体内具有某些特定的生理机制??使其能生存且不受伤害。细菌中通用的抗镉机制如图1-2所示。目前认为的抗性??机制主要有:阻止镉进入胞内:胞内隔离作用和解毒作用;促进镉外流;镉形态??的转化。??1.4.1阻止镉进入胞内??微生物抵抗镉毒性可以通过胞外聚合物、细胞壁与细胞膜的表面富集,通过??吸附将镉截留在细胞表面,以减少细胞对镉的摄入量。SahlanOzturk等人[136]研??宄了蓝细菌的镉抗性及其与胞外多糖的关系,结果表明增加的胞外多糖产量与镉??抗性相关,抗镉能力最强的菌株sp.?BASO670分泌的胞外多糖也最??多(548?mg/L),暴露于?15?和?35?mg/L?的镉溶液中,办sp.?BASO670??和办m?c/wc声hsp.BAS0672的胞外多糖产量增加,增加的胞外多糖有利于将镉??隔离在胞外,从而阻止镉进入胞内。在革兰氏阴性和革兰氏阳性细菌中,镉分别??作为锌和锰转运系统的毒性替代底物进入细胞

技术路线图,检测细菌,细菌代谢,博士学位论文


?山东大学博士学位论文???利用RT-qPCR对转录组结果进行验证;通过检测细菌胞内碱性磷酸酶活性和谷??胱甘肽含量的变化研究了磷镉对细菌代谢的影响,最后阐述P.?sp.?SCSE709-6在??磷镉作用下的生物学机制。??1.7本研究的技术路线??

本文编号:2864349

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2864349.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户90233***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com