银和钯修饰二氧化锰/二氧化钛光电极光催化性能研究
发布时间:2020-12-09 02:35
直接利用太阳能为光源的TiO2光催化技术被认为是21世纪最具应用前景的环境治理技术之一,它既解决了能源危机的困扰,又满足了污染防治的迫切需要。与薄膜电极相比,阳极氧化法制备的TiO2纳米管阵列(TiO2 NTs)因具有较高的比表面积、独特的尺寸效应和良好的光吸收性能,在太阳能转换、光解水制氢和污染物去除领域得到了广泛关注。然而,TiO2对可见光利用效率较低,不能有效利用太阳能。本论文在制备高度有序的TiO2 NTs基础上,通过MnOx改性获得具有可见光响应的复合TiO2光电极,并对其物理化学结构、光电化学性能和光电催化学性能进行了系统研究,以期为二氧化钛光催化氧化技术处理废水中难降解有机物的实用化提供依据。为解决粉末态催化剂不易回收、难重复使用的问题,本文采用电化学阳极氧化法以钛片为基底原位制备TiO2 NTs,研究四种不同类型的电解质溶液(NH4)2SO4<...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background and significance
1.2 Principle and technical features of titanium dioxide photocatalysis
1.2.1 Theory of semi-conductors excitation
1.2.2 Titanium dioxide photocatalysis process
2"> 1.2.3 Photocatalytic advantages and disadvantages of TiO2
1.3 Fabrication methods of titanium dioxide nanotube arrays TiO2 NTs
1.3.1 Hydrothermal method
1.3.2 Freeze drying method
1.3.3 Electrochemical deposition
1.3.4 Synthesis Method
1.3.5 Anodization method
1.3.6 Sol-gel method
1.4 Enhancing titanium dioxide nanotube arrays absorbance of visible light
1.4.1 Surface photosensitivity
1.4.2 Noble element deposition
1.4.3 Non-metallic minerals deposition
1.4.4 Metal element doping
1.4.5 Element co-doping
1.4.6 Coupled semiconductor
1.5 Applications of Titanium dioxide nanotube arrays
1.5.0 Degradation of Pollutants
1.5.1 Water splitting
1.5.2 Solar cell
1.5.3 Photocatalytic cell
1.5.4 Gas sensor
1.5.5 Biomedical applications
1.5.6 Drug delivery and release
1.6 Present research on the role of magnesium dioxide as a potential semiconductor
1.6.1 Introduction of the role and potential of manganese dioxides(MnOx)as semiconductors
1.6.2 Codoping manganese dioxides(MnOx)with noble elements
1.6.3 Present research on codoping manganese element with noble elements
1.7 Photocatalytic degradation of Rhodamine B
1.7.1 Properties of Rhodamine B
1.7.2 Photodegradation of Rhodamine B
1.8 The origin,purpose,significance,and contents of this work
1.8.1 Research origin and significance
1.8.2 Research contents
1.8.3 Technical route
Chapter 2 Experimental materials and research methods
2.1 Chemical reagents and equipment
2.1.1 Experimental reagents
2.1.2 Experimental equipment
2 nanotube photo-electrodes"> 2.2 Fabrication of bare TiO2 nanotube photo-electrodes
2.2.1 Titanium foil substrate pretreatment
2 NTs photo electrode preparation"> 2.2.2 TiO2 NTs photo electrode preparation
2.3 Surface characterization and performance of photo-electrodes
2.3.1 Scanning electron microscope analysis
2.3.2 X-ray diffraction analysis
2.3.3 UV-vis diffuse reflectance spectra analysis
2 nanotube"> 2.4 Photocatalytic degradation of organic pollutants on TiO2 nanotube
2.4.1 Light source selection
2.4.2 Selection of target pollutant
2.4.3 Photocatalysis instruments and equipment
2.4.4 Photocatalytic degradation evaluation of RhB
2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance">Chapter 3 Fabrication of TiO2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance
3.1 Introduction
2 NTs photo-electrodes"> 3.2 Production of TiO2 NTs photo-electrodes
2 NTs photoelectrode"> 3.3 Characterization of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.1 Surface morphology analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.2 Crystal structure analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.3 Optical absorbance analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.4 Band gap energy analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.4 Photocatalytic properties analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.4.1 Photocatalytic degradation of Rhodamine B on TiO2 NTs photoelectrode
2 NTs photoelectrodes"> 3.4.2 Stability of TiO2 NTs photoelectrodes
3.5 Brief summary
2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties">Chapter 4 Fabrication of Pd-MnO2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties
4.1 Introduction
2/TiO2 NTs photoelectrode"> 4.2 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.2.1 Fabrication of MnO2/TiO2 NTs photoelectrode
2 NTs photoelectrode"> 4.2.2 Fabrication of Pd/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.2.3 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3 Characterization of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.1 Surface morphology analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.2 Crystal structure analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode"> 4.3.3 Optical absorbance analysis of Pd-MnO2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.4 Surface composite ion analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4 Photocatalytic properties analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4.1 Photocatalytic degradation of Rhodamine B on Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4.2 Stability of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.5 Mechanism analysis for Pd-MnO2/TiO2 NTs photoelectrode
4.6 Brief summary
2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties">Chapter 5 Fabrication of Ag2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties
5.1 Introduction
2Mn8O16 NCs/TiO2 nanotubes photo-electrodes"> 5.2 Fabrication of Ag2Mn8O16 NCs/TiO2 nanotubes photo-electrodes
2/TiO2 nanotube"> 5.2.1 Fabrication of MnO2/TiO2 nanotube
2 NTs photoelectrodes"> 5.2.2 Fabrication of Ag/TiO2 NTs photoelectrodes
2Mn8O16 NCs/TiO2 NTs photo-electrodes"> 5.2.3 Fabrication of Ag2Mn8O16 NCs/TiO2 NTs photo-electrodes
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3 Characterization of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.1 Surface morphology analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.2 Crystal structure analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.3 Optical absorbance analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.4 Surface composite ion analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode."> 5.4 Photocatalytic properties analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode.
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.4.1 Photocatalytic degradation of Rhodamine B on Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.4.2 Stability of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs"> 5.5 Photocatalytic mechanism of Ag2Mn8O16 NCs/TiO2 NTs
5.5.1 Mechanism of Photogenerated radicals inα-MnO
5.5.2 Mechanism of Photogenerated radicals in Ag2Mn8O
2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance"> 5.6 Ag2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance
5.6.1 Surface properties advantage
5.6.2 Bandgap energy advantage
5.6.3 Degradation ratio advantage
5.6.4 Total organic carbon removal advantage
2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor"> 5.7 Ag2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor
5.7.1 Rhodamine B photodegradation efficiency comparison
5.7.2 Performance evaluation of the proposed prototype photoreactor
5.8 Brief summary
Conclusion
结论
创新点
展望
References
Appendix
Papers published in the period of Ph.D.education
Acknowledgements
Resume
本文编号:2906101
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:138 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background and significance
1.2 Principle and technical features of titanium dioxide photocatalysis
1.2.1 Theory of semi-conductors excitation
1.2.2 Titanium dioxide photocatalysis process
2"> 1.2.3 Photocatalytic advantages and disadvantages of TiO2
1.3.1 Hydrothermal method
1.3.2 Freeze drying method
1.3.3 Electrochemical deposition
1.3.4 Synthesis Method
1.3.5 Anodization method
1.3.6 Sol-gel method
1.4 Enhancing titanium dioxide nanotube arrays absorbance of visible light
1.4.1 Surface photosensitivity
1.4.2 Noble element deposition
1.4.3 Non-metallic minerals deposition
1.4.4 Metal element doping
1.4.5 Element co-doping
1.4.6 Coupled semiconductor
1.5 Applications of Titanium dioxide nanotube arrays
1.5.0 Degradation of Pollutants
1.5.1 Water splitting
1.5.2 Solar cell
1.5.3 Photocatalytic cell
1.5.4 Gas sensor
1.5.5 Biomedical applications
1.5.6 Drug delivery and release
1.6 Present research on the role of magnesium dioxide as a potential semiconductor
1.6.1 Introduction of the role and potential of manganese dioxides(MnOx)as semiconductors
1.6.2 Codoping manganese dioxides(MnOx)with noble elements
1.6.3 Present research on codoping manganese element with noble elements
1.7 Photocatalytic degradation of Rhodamine B
1.7.1 Properties of Rhodamine B
1.7.2 Photodegradation of Rhodamine B
1.8 The origin,purpose,significance,and contents of this work
1.8.1 Research origin and significance
1.8.2 Research contents
1.8.3 Technical route
Chapter 2 Experimental materials and research methods
2.1 Chemical reagents and equipment
2.1.1 Experimental reagents
2.1.2 Experimental equipment
2
2.2.1 Titanium foil substrate pretreatment
2 NTs photo electrode preparation"> 2.2.2 TiO2 NTs photo electrode preparation
2.3 Surface characterization and performance of photo-electrodes
2.3.1 Scanning electron microscope analysis
2.3.2 X-ray diffraction analysis
2.3.3 UV-vis diffuse reflectance spectra analysis
2 nanotube"> 2.4 Photocatalytic degradation of organic pollutants on TiO2 nanotube
2.4.1 Light source selection
2.4.2 Selection of target pollutant
2.4.3 Photocatalysis instruments and equipment
2.4.4 Photocatalytic degradation evaluation of RhB
2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance">Chapter 3 Fabrication of TiO2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance
3.1 Introduction
2 NTs photo-electrodes"> 3.2 Production of TiO2 NTs photo-electrodes
2 NTs photoelectrode"> 3.3 Characterization of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.1 Surface morphology analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.2 Crystal structure analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.3 Optical absorbance analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.3.4 Band gap energy analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.4 Photocatalytic properties analysis of TiO2 NTs photoelectrode
2 NTs photoelectrode"> 3.4.1 Photocatalytic degradation of Rhodamine B on TiO2 NTs photoelectrode
2 NTs photoelectrodes"> 3.4.2 Stability of TiO2 NTs photoelectrodes
3.5 Brief summary
2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties">Chapter 4 Fabrication of Pd-MnO2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties
4.1 Introduction
2/TiO2 NTs photoelectrode"> 4.2 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.2.1 Fabrication of MnO2/TiO2 NTs photoelectrode
2 NTs photoelectrode"> 4.2.2 Fabrication of Pd/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.2.3 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3 Characterization of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.1 Surface morphology analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.2 Crystal structure analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode"> 4.3.3 Optical absorbance analysis of Pd-MnO2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.3.4 Surface composite ion analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4 Photocatalytic properties analysis of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4.1 Photocatalytic degradation of Rhodamine B on Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.4.2 Stability of Pd-MnO2/TiO2 NTs photoelectrode
2/TiO2 NTs photoelectrode"> 4.5 Mechanism analysis for Pd-MnO2/TiO2 NTs photoelectrode
4.6 Brief summary
2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties">Chapter 5 Fabrication of Ag2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties
5.1 Introduction
2Mn8O16 NCs/TiO2 nanotubes photo-electrodes"> 5.2 Fabrication of Ag2Mn8O16 NCs/TiO2 nanotubes photo-electrodes
2/TiO2 nanotube"> 5.2.1 Fabrication of MnO2/TiO2 nanotube
2 NTs photoelectrodes"> 5.2.2 Fabrication of Ag/TiO2 NTs photoelectrodes
2Mn8O16 NCs/TiO2 NTs photo-electrodes"> 5.2.3 Fabrication of Ag2Mn8O16 NCs/TiO2 NTs photo-electrodes
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3 Characterization of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.1 Surface morphology analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.2 Crystal structure analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.3 Optical absorbance analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.3.4 Surface composite ion analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode."> 5.4 Photocatalytic properties analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode.
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.4.1 Photocatalytic degradation of Rhodamine B on Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs photoelectrode"> 5.4.2 Stability of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
2Mn8O16 NCs/TiO2 NTs"> 5.5 Photocatalytic mechanism of Ag2Mn8O16 NCs/TiO2 NTs
5.5.1 Mechanism of Photogenerated radicals inα-MnO
5.5.2 Mechanism of Photogenerated radicals in Ag2Mn8O
2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance"> 5.6 Ag2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance
5.6.1 Surface properties advantage
5.6.2 Bandgap energy advantage
5.6.3 Degradation ratio advantage
5.6.4 Total organic carbon removal advantage
2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor"> 5.7 Ag2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor
5.7.1 Rhodamine B photodegradation efficiency comparison
5.7.2 Performance evaluation of the proposed prototype photoreactor
5.8 Brief summary
Conclusion
结论
创新点
展望
References
Appendix
Papers published in the period of Ph.D.education
Acknowledgements
Resume
本文编号:2906101
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2906101.html