煤矿区中的钒:分布,赋存形态和环境行为
发布时间:2021-04-12 13:29
煤中的钒具有潜在的环境影响和经济意义,然而,关于煤矿区中钒的环境地球化学,仍缺乏系统的研究。在本次研究中,通过搜集文献中2900多个中国煤炭样品数据,全面调查了中国煤中钒的浓度和分布状况;从中国九个省份采集了 21个不同煤级的煤样,基于逐级提取和燃烧实验等方法,分析了煤中钒的化学形态和燃烧行为;在淮南和淮北煤矿区中采集了河流沉积物,土壤和鱼类样品,旨在探究煤矿区中钒的分布模式,赋存形态,迁移转化和环境效应;与煤矿区作对比,在石油开采业密集的黄河三角洲地区采集了土壤和水生生物样品,探讨了石油产区中钒的环境地球化学。本研究的主要结果如下:(1)以各省煤炭储量为权重因子,更新了中国煤中钒的加权平均浓度为35.81 μg/g。根据钒在不同聚煤区域的浓度系数,划分出中国煤中钒分布的贫乏,正常和富集区域。(2)煤中的钒主要以硅酸盐结合态存在,随着煤级的增加,有机质结合态的钒的比重呈下降趋势。煤样中的钒和铬呈高度正相关,这可能归因于煤中钒和铬赋存的主要形式都是硅酸盐结合态和有机结合态。(3)估算了近十年由中国燃煤造成的钒排放量,及从1990年至2035年世界不同生产部门的钒排放量,发电厂是最主要的钒...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:182 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
英文部分
Chapter 1 Introduction
1.1 Physiochemical properties of V
1.2 The resources and usage of V
1.3 Toxicity of V and its compounds
1.4 Environmental fate of V
1.5 Research progress of V in coal and coal mining areas
1.6 Overall objective
1.7 Research strategy and technical route
Chapter 2 Samples and methodology
2.1 Introduction of the research area
2.1.1 Huaibei coal mining area
2.1.2 Huai River in Huainan coal mining area
2.1.3 Typical petroleum-producing region
2.2 Samples
2.2.1 Coal samples
2.2.2 Coal gangue samples
2.2.3 Sediment core
2.2.4 Soil samples
2.2.5 Aquatic organism samples
2.3 Methodology
2.3.1 Proximate and ultimate analysis
2.3.2 Elemental analysis
2.3.3 Leaching test
2.3.4 Simulated combustion experiment
2.3.5 Sequential chemical extraction procedure
2.3.6 Stable isotope analysis
2.3.7 Geochronology
2.3.8 Quality control
2.3.9 Statistical analysis
2.3.10 Data analysis
Chapter 3 Abundance, distribution,and enrichment of V in Chinesecoals
3.1 Introduction
3.2 Average V abundance in Chinese coals
3.3 Distribution of V in Chinese coals
3.3.1 Distribution of V in coals from different regions
3.3.2 Vanadium abundance in coals of different ages
3.3.3 Vanadium abundance in coals of different ranks
3.4 The enrichment of V in Chinese coals
3.4.1 Highly-elevated V in Chinese coals
3.4.2 Enrichment mechanism of V in Chinese coals
3.5 Summary
Chapter 4 Modes of Occurrence of V in coals
4.1 Introduction
4.2 Correlation of V with ash yield
4.3 Correlation of V with major elements
4.4 Modes of occurrence of V in studied coal by sequential extraction
4.4.1 Inorganically associated V
4.4.2 Association with organic matter
4.5 The factors influencing the occurrence of V in coals
4.5.1 Coal rank
4.5.2 Coal-forming environment
4.6 Comparison of chemical speciation between V and Cr
4.6.1 Correlation between V and Cr
4.6.2 Correlation of the chemical speciation of V and Cr
4.7 Summary
Chapter 5 The behavior of V during coal combustion
5.1 Introduction
5.2 Emission inventory of V by coal consumption
5.2.1 The V emission flux by Chinese and global coal consumption
5.2.2 The global V emission flux by different sectors
5.3 The combustion behavior of V in coal
5.3.1 The distribution of V among different coal combustion products
5.3.2 Volatility of V during coal combustion
5.4 Comparison of the combustion behavior between V and Cr
5.5 Summary
Chapter 6 Environmental geochemistry of V in coal mining areas
6.1 Introduction
6.2 Vanadium concentration in coal gangue from Huaibei and Huainan coalmining areas
6.3 Vanadium concentration in soils from Huaibei coal mining area
6.4 Vanadium in sediments in Huai River from Huainan coal mining area
6.4.1 Sedimentation rate
6.4.2 Vanadium concentrations in surface sediments
6.4.3 Temporal characteristics of V in sediments
6.4.4 The fractionation of V in sediments
6.4.5 Enrichment factor and geo-accumulation index
6.5 Vanadium concentration in fish from the Huaibei coal mining area
6.6 Summary
Chapter 7 Environmental geochemistry of V in petroleum-producingareas
7.1 Introduction
7.2 Vanadium concentration in soil from the Yellow River Delta
7.3 Vanadium in fish from the Yellow River Estuary
7.3.1 Concentrations of V in fish from the Yellow River Estuary
7.3.2 Stable isotope values of fish from the Yellow River Estuary
7.3.3 Estimated daily intake of V via fish consumption
7.3.4 The relationship between V and geographical environment
7.4 Vanadium in aquatic organisms from Laizhou Bay
7.4.1 Concentrations of V in aquatic organisms
7.4.2 Stable isotope values of aquatic organisms from Laizhou Bay
7.4.3 Estimated daily intake of V via aquatic organism consumption
7.5 Summary
Chapter 8 Major conclusions and innovations
8.1 Major conclusions
8.1.1 The environmental geochemistry of V in coals
8.1.2 Contamination level and potential risk of V in coal mining areas
8.1.3 Comparison of the environmental geochemistry of V betweenpetroleum-producing areas and coal mining areas
8.2 Innovations
中文部分
第一章 绪论
1.1 研究背景和意义
1.1.1 研究背景
1.1.2 研究意义
1.2 国内外研究进展
1.2.1 煤中钒的研究进展
1.2.2 煤矿区中的钒的研究进展
1.3 研究目标和内容
1.4 研究思路、技术路线和工作量
1.4.1 研究思路和技术路线
1.4.2 主要工作量
第二章 采样与测试
2.1 研究区概况
2.1.1 淮北煤矿区
2.1.2 淮南煤矿区及淮河淮南段
2.1.3 典型石油产区
2.2 样品采集
2.2.1 煤样品
2.2.2 煤矸石样品
2.2.3 沉积物样品
2.2.4 土壤样品
2.2.5 水生生物样品
2.3 样品分析与测试
2.3.1 煤样的工业分析
2.3.2 元素分析
2.3.3 淋滤实验
2.3.4 模拟燃烧实验
2.3.5 逐级化学提取实验
2.3.6 稳定同位素分析
2.3.7 地质年代学
2.3.8 质量控制
2.3.9 统计分析
2.3.10 数据分析
第三章 中国煤中钒的含量,分布和富集
3.1 前言
3.2 中国煤中钒的平均丰度
3.3 中国煤中钒的分布
3.3.1 不同地区煤中钒的分布
3.3.2 不同成煤时期煤中钒的丰度
3.3.3 不同煤级煤中钒的丰度
3.4 中国煤中钒的富集
3.4.1 中国的富钒煤
3.4.2 中国煤中钒的富集机制
3.5 小结
第四章 煤中钒的赋存状态
4.1 前言
4.2 钒和灰分的关系
4.3 钒与主量元素的关系
4.4 通过逐级提取得到的煤中钒的赋存状态
4.4.1 无机结合态的钒
4.4.2 有机结合态的钒
4.5 影响煤中钒赋存状态的因素
4.5.1 煤级
4.5.2 成煤环境
4.6 钒与铬的化学形态的比较
4.6.1 钒和铬的相关性
4.6.2 铬与钒化学形态的相互关系
4.7 小结
第五章 煤中钒的燃烧行为
5.1 前言
5.2 煤消耗产生的钒释放清单
5.2.1 中国和世界煤消耗中钒的释放
5.2.2 世界不同部门钒的释放清单
5.3 煤中钒的燃烧行为
5.3.1 煤燃烧产物中钒的分布
5.3.2 煤燃烧过程中钒的挥发
5.4 钒和铬的燃烧行为的比较
5.5 小结
第六章 煤矿区中钒的环境地球化学研究
6.1 前言
6.2 淮南淮北煤矿区煤矸石中的钒
6.3 淮北煤矿区土壤中钒的浓度
6.4 淮南煤矿区淮河沉积物中的钒
6.4.1 沉积速率
6.4.2 表层沉积物中钒的浓度
6.4.3 沉积物中钒的年代变化特征
6.4.4 沉积物中钒的化学形态
6.4.5 富集系数和地累积指数
6.5 淮北煤矿区塌陷塘中鱼的钒含量
6.6 小结
第七章 石油产区中钒的环境地球化学
7.1 前言
7.2 黄河三角洲土壤中的钒
7.3 黄河口鱼中的钒
7.3.1 黄河口鱼的钒含量
7.3.2 黄河口鱼中的碳氮同位素
7.3.3 通过鱼消费的每日钒摄入量
7.3.4 钒含量与地理环境的关系
7.4 莱州湾水生生物中的钒
7.4.1 水生生物中的钒含量
7.4.2 莱州湾水生生物中的碳氮同位素
7.4.3 水生生物消费引发的钒摄入量
7.5 小结
第八章 主要结论和创新点
8.1 主要结论
8.1.1 煤中钒的环境地球化学
8.1.2 煤矿区中钒的污染水平和潜在风险
8.1.3 石油产区与煤矿区中钒的环境地球化学的比较
8.2 主要创新点
参考文献
附录
致谢
Acknowledgements
学位申请者简介
【参考文献】:
期刊论文
[1]湖南辰溪高有机硫煤的微量元素特征[J]. 李薇薇,唐跃刚,邓秀杰,于小磊,江生. 煤炭学报. 2013(07)
[2]内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J]. 邹建华,刘东,田和明,刘峰,李甜,杨洪永. 煤炭学报. 2013(06)
[3]准东煤田煤地球化学特征[J]. 庄新国,王平,周继兵,李晶,阿米娜. 新疆地质. 2013(01)
[4]基于污染负荷指数法评价淮河(安徽段)底泥中重金属污染研究[J]. 王婕,刘桂建,方婷,袁自娇. 中国科学技术大学学报. 2013(02)
[5]毕节地区晚二叠世煤中微量元素的分布赋存规律及控因分析[J]. 程伟,杨瑞东,张覃,崔玉朝,高军波. 煤炭学报. 2013(01)
[6]湖南省寒武系黑色岩系页岩型钒矿概论[J]. 陈明辉,胡详昭,孙际茂,徐军伟,鲍振襄,包觉敏. 地质找矿论丛. 2012(04)
[7]新疆库-拜煤田侏罗系塔里奇克组煤的地球化学特征[J]. 王德利,张宇航. 中国煤炭地质. 2012(05)
[8]煤微量元素地球化学的一个重要规律—以渭北5号煤层为例[J]. 杨建业. 中国科学:地球科学. 2011(10)
[9]The periodic law of trace elements in coal——A case study of the 5# coal from the Weibei Coalfield[J]. YANG JianYe Department of Material Engineering, Xi’an University of Science and Technology, Xi’an 710054, China. Science China(Earth Sciences). 2011(10)
[10]徐州大屯腐泥煤的煤岩煤质和微量元素特征[J]. 周国庆,姜尧发,刘梦溪. 中国煤炭地质. 2011(07)
本文编号:3133381
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:182 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
英文部分
Chapter 1 Introduction
1.1 Physiochemical properties of V
1.2 The resources and usage of V
1.3 Toxicity of V and its compounds
1.4 Environmental fate of V
1.5 Research progress of V in coal and coal mining areas
1.6 Overall objective
1.7 Research strategy and technical route
Chapter 2 Samples and methodology
2.1 Introduction of the research area
2.1.1 Huaibei coal mining area
2.1.2 Huai River in Huainan coal mining area
2.1.3 Typical petroleum-producing region
2.2 Samples
2.2.1 Coal samples
2.2.2 Coal gangue samples
2.2.3 Sediment core
2.2.4 Soil samples
2.2.5 Aquatic organism samples
2.3 Methodology
2.3.1 Proximate and ultimate analysis
2.3.2 Elemental analysis
2.3.3 Leaching test
2.3.4 Simulated combustion experiment
2.3.5 Sequential chemical extraction procedure
2.3.6 Stable isotope analysis
2.3.7 Geochronology
2.3.8 Quality control
2.3.9 Statistical analysis
2.3.10 Data analysis
Chapter 3 Abundance, distribution,and enrichment of V in Chinesecoals
3.1 Introduction
3.2 Average V abundance in Chinese coals
3.3 Distribution of V in Chinese coals
3.3.1 Distribution of V in coals from different regions
3.3.2 Vanadium abundance in coals of different ages
3.3.3 Vanadium abundance in coals of different ranks
3.4 The enrichment of V in Chinese coals
3.4.1 Highly-elevated V in Chinese coals
3.4.2 Enrichment mechanism of V in Chinese coals
3.5 Summary
Chapter 4 Modes of Occurrence of V in coals
4.1 Introduction
4.2 Correlation of V with ash yield
4.3 Correlation of V with major elements
4.4 Modes of occurrence of V in studied coal by sequential extraction
4.4.1 Inorganically associated V
4.4.2 Association with organic matter
4.5 The factors influencing the occurrence of V in coals
4.5.1 Coal rank
4.5.2 Coal-forming environment
4.6 Comparison of chemical speciation between V and Cr
4.6.1 Correlation between V and Cr
4.6.2 Correlation of the chemical speciation of V and Cr
4.7 Summary
Chapter 5 The behavior of V during coal combustion
5.1 Introduction
5.2 Emission inventory of V by coal consumption
5.2.1 The V emission flux by Chinese and global coal consumption
5.2.2 The global V emission flux by different sectors
5.3 The combustion behavior of V in coal
5.3.1 The distribution of V among different coal combustion products
5.3.2 Volatility of V during coal combustion
5.4 Comparison of the combustion behavior between V and Cr
5.5 Summary
Chapter 6 Environmental geochemistry of V in coal mining areas
6.1 Introduction
6.2 Vanadium concentration in coal gangue from Huaibei and Huainan coalmining areas
6.3 Vanadium concentration in soils from Huaibei coal mining area
6.4 Vanadium in sediments in Huai River from Huainan coal mining area
6.4.1 Sedimentation rate
6.4.2 Vanadium concentrations in surface sediments
6.4.3 Temporal characteristics of V in sediments
6.4.4 The fractionation of V in sediments
6.4.5 Enrichment factor and geo-accumulation index
6.5 Vanadium concentration in fish from the Huaibei coal mining area
6.6 Summary
Chapter 7 Environmental geochemistry of V in petroleum-producingareas
7.1 Introduction
7.2 Vanadium concentration in soil from the Yellow River Delta
7.3 Vanadium in fish from the Yellow River Estuary
7.3.1 Concentrations of V in fish from the Yellow River Estuary
7.3.2 Stable isotope values of fish from the Yellow River Estuary
7.3.3 Estimated daily intake of V via fish consumption
7.3.4 The relationship between V and geographical environment
7.4 Vanadium in aquatic organisms from Laizhou Bay
7.4.1 Concentrations of V in aquatic organisms
7.4.2 Stable isotope values of aquatic organisms from Laizhou Bay
7.4.3 Estimated daily intake of V via aquatic organism consumption
7.5 Summary
Chapter 8 Major conclusions and innovations
8.1 Major conclusions
8.1.1 The environmental geochemistry of V in coals
8.1.2 Contamination level and potential risk of V in coal mining areas
8.1.3 Comparison of the environmental geochemistry of V betweenpetroleum-producing areas and coal mining areas
8.2 Innovations
中文部分
第一章 绪论
1.1 研究背景和意义
1.1.1 研究背景
1.1.2 研究意义
1.2 国内外研究进展
1.2.1 煤中钒的研究进展
1.2.2 煤矿区中的钒的研究进展
1.3 研究目标和内容
1.4 研究思路、技术路线和工作量
1.4.1 研究思路和技术路线
1.4.2 主要工作量
第二章 采样与测试
2.1 研究区概况
2.1.1 淮北煤矿区
2.1.2 淮南煤矿区及淮河淮南段
2.1.3 典型石油产区
2.2 样品采集
2.2.1 煤样品
2.2.2 煤矸石样品
2.2.3 沉积物样品
2.2.4 土壤样品
2.2.5 水生生物样品
2.3 样品分析与测试
2.3.1 煤样的工业分析
2.3.2 元素分析
2.3.3 淋滤实验
2.3.4 模拟燃烧实验
2.3.5 逐级化学提取实验
2.3.6 稳定同位素分析
2.3.7 地质年代学
2.3.8 质量控制
2.3.9 统计分析
2.3.10 数据分析
第三章 中国煤中钒的含量,分布和富集
3.1 前言
3.2 中国煤中钒的平均丰度
3.3 中国煤中钒的分布
3.3.1 不同地区煤中钒的分布
3.3.2 不同成煤时期煤中钒的丰度
3.3.3 不同煤级煤中钒的丰度
3.4 中国煤中钒的富集
3.4.1 中国的富钒煤
3.4.2 中国煤中钒的富集机制
3.5 小结
第四章 煤中钒的赋存状态
4.1 前言
4.2 钒和灰分的关系
4.3 钒与主量元素的关系
4.4 通过逐级提取得到的煤中钒的赋存状态
4.4.1 无机结合态的钒
4.4.2 有机结合态的钒
4.5 影响煤中钒赋存状态的因素
4.5.1 煤级
4.5.2 成煤环境
4.6 钒与铬的化学形态的比较
4.6.1 钒和铬的相关性
4.6.2 铬与钒化学形态的相互关系
4.7 小结
第五章 煤中钒的燃烧行为
5.1 前言
5.2 煤消耗产生的钒释放清单
5.2.1 中国和世界煤消耗中钒的释放
5.2.2 世界不同部门钒的释放清单
5.3 煤中钒的燃烧行为
5.3.1 煤燃烧产物中钒的分布
5.3.2 煤燃烧过程中钒的挥发
5.4 钒和铬的燃烧行为的比较
5.5 小结
第六章 煤矿区中钒的环境地球化学研究
6.1 前言
6.2 淮南淮北煤矿区煤矸石中的钒
6.3 淮北煤矿区土壤中钒的浓度
6.4 淮南煤矿区淮河沉积物中的钒
6.4.1 沉积速率
6.4.2 表层沉积物中钒的浓度
6.4.3 沉积物中钒的年代变化特征
6.4.4 沉积物中钒的化学形态
6.4.5 富集系数和地累积指数
6.5 淮北煤矿区塌陷塘中鱼的钒含量
6.6 小结
第七章 石油产区中钒的环境地球化学
7.1 前言
7.2 黄河三角洲土壤中的钒
7.3 黄河口鱼中的钒
7.3.1 黄河口鱼的钒含量
7.3.2 黄河口鱼中的碳氮同位素
7.3.3 通过鱼消费的每日钒摄入量
7.3.4 钒含量与地理环境的关系
7.4 莱州湾水生生物中的钒
7.4.1 水生生物中的钒含量
7.4.2 莱州湾水生生物中的碳氮同位素
7.4.3 水生生物消费引发的钒摄入量
7.5 小结
第八章 主要结论和创新点
8.1 主要结论
8.1.1 煤中钒的环境地球化学
8.1.2 煤矿区中钒的污染水平和潜在风险
8.1.3 石油产区与煤矿区中钒的环境地球化学的比较
8.2 主要创新点
参考文献
附录
致谢
Acknowledgements
学位申请者简介
【参考文献】:
期刊论文
[1]湖南辰溪高有机硫煤的微量元素特征[J]. 李薇薇,唐跃刚,邓秀杰,于小磊,江生. 煤炭学报. 2013(07)
[2]内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J]. 邹建华,刘东,田和明,刘峰,李甜,杨洪永. 煤炭学报. 2013(06)
[3]准东煤田煤地球化学特征[J]. 庄新国,王平,周继兵,李晶,阿米娜. 新疆地质. 2013(01)
[4]基于污染负荷指数法评价淮河(安徽段)底泥中重金属污染研究[J]. 王婕,刘桂建,方婷,袁自娇. 中国科学技术大学学报. 2013(02)
[5]毕节地区晚二叠世煤中微量元素的分布赋存规律及控因分析[J]. 程伟,杨瑞东,张覃,崔玉朝,高军波. 煤炭学报. 2013(01)
[6]湖南省寒武系黑色岩系页岩型钒矿概论[J]. 陈明辉,胡详昭,孙际茂,徐军伟,鲍振襄,包觉敏. 地质找矿论丛. 2012(04)
[7]新疆库-拜煤田侏罗系塔里奇克组煤的地球化学特征[J]. 王德利,张宇航. 中国煤炭地质. 2012(05)
[8]煤微量元素地球化学的一个重要规律—以渭北5号煤层为例[J]. 杨建业. 中国科学:地球科学. 2011(10)
[9]The periodic law of trace elements in coal——A case study of the 5# coal from the Weibei Coalfield[J]. YANG JianYe Department of Material Engineering, Xi’an University of Science and Technology, Xi’an 710054, China. Science China(Earth Sciences). 2011(10)
[10]徐州大屯腐泥煤的煤岩煤质和微量元素特征[J]. 周国庆,姜尧发,刘梦溪. 中国煤炭地质. 2011(07)
本文编号:3133381
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/3133381.html