当前位置:主页 > 社科论文 > 生态环境论文 >

Preparation and Characterization of Cross-Linked Narrow Mole

发布时间:2022-01-24 07:05
  壳聚糖衍生物分子结构中含有大量的氨基和羟基基团,且其无毒,成本低,可大量获得,因而壳聚糖衍生物可以用作高效的吸附剂,以除去重金属。这一点已经受到了广泛的关注。然而,壳聚糖分子间存在的强氢键作用使得壳聚糖具有稳定的晶体结构,这导致壳聚糖在中性或碱性pH环境下不溶解,因而壳聚糖的应用受到了很大的限制。因此,降解得到窄分子量分布低聚壳聚糖(NLCSn, n表示聚合度),以提高其在中性水溶液的溶解性是非常必要的。利用羧基如丙酮酸(PA)分子对NLCSn进行修饰,以提高其对金属离子的选择性和吸附能力。窄分子量分布低聚壳聚糖的羧甲基化衍生物分子有很多活性基团,如氨基,羧基,羟基,这些活性基团的存在使得这类窄分子量分布低聚壳聚糖衍生物能够与很多金属离子进行络合。从吸附方面来说,将溶于酸性或中性条件下的窄分子量分布低聚壳聚糖羧甲基衍生物与戊二醛(GLA)进行交联,以增强机械强度和化学抵抗性。本论文的第一个研究内容是制备得到交联化的NLCS。丙酮酸衍生物,并对其结构进行表征。首先,壳聚糖降解成两类窄分子量分布低聚壳聚糖(NLCS8和NLCS11),再通过丙酮酸(PA)进行修饰,最后再与戊二醛(GLA)交... 

【文章来源】:江苏大学江苏省

【文章页数】:159 页

【学位级别】:博士

【文章目录】:
ABSTRACT
摘要
CHAPTER 1 INTRODUCTION
CHAPTER 2 OBJECTIVES
CHAPTER 3 LITERATURE REVIEW
    3.1. INTRODUCTION
    3.2 Preparation and characterization of some carboxymethyl chitosan derivatives
        3.2.1 Preparation of O-carboxymethyl chitosan(O-CMCS)
        3.2.2 Preparation of N-carboxymethyl chitosan(N-CMCS)
        3.2.3 Preparation of N,O-carboxymethyl chitosan(N,O-CMCS)
        3.2.4 Preparation of N,N-dicarboxymethyl chitosan(N,N-DCMCS)
        3.2.5 Preparation of N-succinyl chitosan(N-SCS)
    3.3 Characterization of carboxymethyl chitosan
        3.3.1 Fourier Transform Infra-red spectroscopy
        3.3.2 Scanning electron microscopy
        3.3.3 Thermogravimetric analysis(TGA)
        3.3.4 X-ray diffraction
        3.3.5 BET surface area analysis
        3.4 Chelating and sorption properties of carboxymethyl chitosan
    3.5 Batch experiments
        3.5.1 Adsorption Equilibrium
        3.5.2 Adsorption Kinetics
        3.5.3 Adsorption Thermodynamic
CHAPTER 4 PREPARATION AND CHARACTERIZATION OF CROSSLINKED NARROW MOLECULAR WEIGHT DI STRIBUTION AND LOW POLYMERIZATION DEGREE CHITOSAN PYRUVIC ACID DERIVATIVES FOR HEAVY METAL REMOVAL
    4.1 INTRODUCTION
    4.2 MATERIALS AND METHOD
        4.2.1. Materials
        4.2.2. Preparation of NLCS_n(n:8,11)using microwave
        4.2.3. Modification of NLCS_n(n:8,11)with pyruvic acid
        4.2.4. Cross-linking of NLCS_nPA(n:8,11)with glutaraldehyde(GLA)
        4.2.5. Characterization
    4.3 RESULTS AND DISCUSSION
        4.3.1. Characterization
    4.4 CONCLUSIONS
CHAPTER 5 REMOVAL OF LEAD FROM AQUEOUS SOLUTION USING CROSS-LINKED NARROWMOLECULAR WEIGHT DISTRIBUTION AND LOW POLYMERIZATION DEGREE CHITOSAN PYRUVIC ACID DERIVATIVES
    5.1 INTRODUCTION
    5.2 MATERIALS AND METHOD
        5.2.1. Materials
        5.2.2. Preparation and characterization of NLCS_nPA-GLA(n=8,11)
        5.2.3. Standard Pb(Ⅱ)Solution
        5.2.4. Adsorption experiment
        5.2.5. The factorial design
        5.2.6. Isothermal Titration Calorimetry(ITC)
    5.3. RESULTS AND DISCUSSION
        5.3.1. Characte rization
        5.3.2 Factorial design
        5.3.3 ANOVA
        5.3.4 The main factors effects(Adsorbent dosage,Adsorbent type,Pb(Ⅱ)concentration)on adsorption capacity(qe)
        5.3.5 The interaction effects
        5.3.6 Student's t-test
        5.3.7 Normal probability plots
        5.3.8 Adsorption experiment
        5.3.9. Adsorption isotherm models
        5.3.10 Adsorption kinetics study
        5.3.11 Thermodynamic studies
        5.3.12 Isothermal Titration Calorimetry(ITC)data Interpretation
        5.3.13 Pb(Ⅱ)Adsorption Mechanism
    5.4 CONCLUSIONS
CHAPTER 6 COPPER REMOVAL ONTO CROSS-LINKED NARROW MOLECULAR WEIGHTDISTRIBUTION AND LOW POLYMERIZATION DEGREE CHITOSAN PYRUVIC ACID DERIVATIVE:SORPTION EQUILIBRIUM,KINETICS AND THERMODYNAMICS
    6.1 INTRODUCTION
    6.2 MATERIALS AND METHOD
        6.2.1 Materials
        6.2.2. Preparation and characterization of NLCS_(11)PA-GLA
        6.2.3. Standard Cu(Ⅱ)solution
        6.2.4. Batch experiment
    6.3. RESULTS AND DISCUSSION
        6.3.1 Characterization
        6.3.2 Multivariate statistical design of experiments
        6.3.3 ANOVA
        6.3.4. The main factors effects(pH,Temperature,dosage and Cu(Ⅱ) concentration) onremoval efficiency (%R) of NLCS_(11)PA-GLA
        6.3.5 The interaction effects
        6.3.6 Student's t-test
        6.3.7 Normal probability plots
        6.3.8 Sorption experiment
        6.3.9 Sorption Isotherm Models
        6.3.10. Kinetic study
        6.3.11 Thermodynamic studies
        6.3.12. Copper sorption Mechanism
        6.3.13 Desorption studies
    6.4. CONCLUSIONS
CHAPTER 7 GLUTARALDEHYDE CROSS-LINKED NARROW MOLECULAR WEIGHT DISTRIBUTION AND LOW POLYMERIZATION DEGREE CHITOSAN PYRUVIC ACID DERIVATIVE FOR CADMIUM REMOVAL
    7.1 INTRODUCTION
    7.2 MATERIALS AND METHOD
        7.2.1 Materials
        7.2.2. Preparation and characterization of NLCS_8PA-GLA
        7.2.3 Standard Cd(Ⅱ) solution
        7.2.4 Batch experiment
        7.2.5. The factorial design
    7.3 RESULTS AND DISCUSSION
        7.3.1 Characterization
        7.3.2 Factorial design
        7.3.3 ANOVA
        7.3.4 The main factors effects(pH,temperature and Cd(Ⅱ)concentration)on removal efficiency(%R)of NLCS_8PA-GLA
        7.3.5 The interaction effects
        7.3.6 Student's t-test
        7.3.7 Normal probability plots
        7.3.8 Sorption experiment
        7.3.9. Sorption Isotherm Models
        7.3.10 Kinetic study
        7.3.11 Thermodynamic studies
        7.3.12 Cadmium Sorption Mechanism
    7.4 CONCLUSIONS
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS
    8.1 CONCLUSIONS
    8.2 INNOVATION OR NOVELTY
    8.3 RECOMMENDATIONS FOR FURTHER RESEARCH
REFERENCES
ACKNOWLEDGEMENT
PUBLICATIONS


【参考文献】:
期刊论文
[1]Pb(Ⅱ) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies[J]. W. S. Wan Ngah,S. Fatinathan.  Journal of Environmental Sciences. 2010(03)
[2]窄分子量分布低聚壳聚糖与HSA相互作用的荧光光谱研究[J]. 刘海宽,王海洋,吴姗姗,张岐,杜金风,顾海波.  光谱学与光谱分析. 2009(09)



本文编号:3606104

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/3606104.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c5f9a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com