白令海二甲基硫化物的时空变化研究

发布时间:2018-01-08 01:05

  本文关键词:白令海二甲基硫化物的时空变化研究 出处:《国家海洋局第一海洋研究所》2017年硕士论文 论文类型:学位论文


  更多相关文章: 二甲基硫化物 DMS 水团特征 时空变化 白令海


【摘要】:生源硫化物是自然界中由生物生产、利用或转化的一类含硫物质,它们在硫的全球循环中所起的作用至关重要。二甲基硫(Dimethylsulfide,DMS)作为海洋中最重要的挥发性硫化物,其对全球气候变化以及酸雨等全球性环境问题能起到非常重要的影响。β-二甲基巯基丙酸内盐(Dimethylsulfoniopropionate,DMSP)和二甲基亚砜(Dimethyl sulfoxide,DMSO)分别作为DMS的前体物质和重要氧化产物,在很大程度上影响着海水中DMS的含量和分布。水团作为海洋中重要的水体功能单元,其性质的差异直接影响着生源硫化物的生物地球化学过程。因此,基于水团特征来研究生源硫化物的时空分布特征及其影响因素,有助于更加准确的把握生源硫化物分布变化的影响机制,从而为深入研究海洋生源硫对气候环境的影响提供新的思路。极地、亚极地海区能够放大全球气候变化所引起的微观效应,从而起到有效的指示作用。本文基于中国第5~7次北极科学考察白令海调查实验数据,在水团划分的基础上,分析了白令海各水团生源硫化物(DMS、DMSP、DMSO)的时空变化规律及其影响因素。得出的主要结果如下:1、白令海海盆区有3个水团,即上层水、中层水和深层水,其中,上层水具有高温、低盐、高溶解氧、高叶绿素、低营养盐的特征;中层水主要特征为低温,其他要素浓度水平介于上层水和深层水之间;深层水具有低温、高盐、低溶解氧、高营养盐、低叶绿素的特征,尤其是硅酸盐浓度较同类海区同深度水体高很多。白令海中陆架区有4个水团,即白令海陆坡水、白令海陆架冷水团、陆架表层暖水和混合变性水,其中,陆架表层暖水具有高温、低盐、低营养盐、低叶绿素特征;陆坡水具有高营养盐、低叶绿素特征;陆架冷水团具有低温、高溶解氧、高叶绿素特征;混合变性水的性质介于陆坡水和冷水团之间。北部内陆架区分3个水团,即阿纳德尔水、阿拉斯加沿岸水和白令海陆架水,阿纳德尔水具有低温、高盐、高营养盐、低叶绿素、低溶解氧的特征;阿拉斯加沿岸水则为高温、低盐、低营养盐;白令海陆架水主要特征为高溶解氧、高叶绿素。此外,白令海区域2012年为冷年(较暖年低2~3°C),2014、2016年为暖年,因此各水团温度2012年最低。2、白令海区2012年为冷年(较暖年低2~3°C),2014、2016年为暖年。受此影响,白令海二甲基硫化物的浓度和生物周转速率2012年小于2014年和2016年,例外的是北部内陆架区DMSP浓度2012年大于2014和2016年,可能与DMSP充当细胞内冷冻保护剂有关。二甲基硫化物生物生产速率略高于消耗速率,且生产和消耗速率空间变化趋势一致。白令海DMSO的水平分布趋势为:海盆区中陆架区北部内陆架区;DMSP则为:中陆架区海盆区北部内陆架区;DMS水平分布无明显规律。3、白令海海盆区,各水团DMS的含量大小为:上层水中层水深层水,各水团浓度平均值分别在5~15、2~8和0~1 nmol/L之间;在海盆北部靠近陆坡的区域,受气旋式涡流的影响上层DMS高值水舌有明显向下延伸趋势;各水团DMSPd浓度平均值在2~35 nmol/L之间,而DMSPp平均值在6~110 nmol/L之间;上层水和中层水DMS和DMSPd的分布主要受Chl-a的影响,深层水中温盐胁迫影响DMS和DMSPd的分布。中陆架区,表层暖水DMS和DMSP浓度较高,DMS、DMSPd和DMSPp平均值分别在2~11、20~40和27~87 nmol/L;陆坡水和混合水次之,平均值分别在0~2、2~40和18~78 nmol/L;陆架冷水团浓度相对较低,平均值分别在0~2、1~18和14~50 nmol/L;表层暖水、陆架冷水团和白令海陆坡水DMS和DMSP分布的受控因素较为复杂,混合变性水受Chl-a影响明显。北部内陆架区,阿纳德尔水中DMS和DMSP浓度最低,DMS、DMSPd和DMSPp平均值分别在0~3、12~28和20~80 nmol/L;白令海陆架水和阿拉斯加沿岸水中较高,平均值分别在1~15、12~47和44~120 nmol/L;白令海陆架水DMS与DMSP受温盐的影响明显,阿拉斯加沿岸水和阿纳德尔水影响因素较复杂。4、白令海DMSOd和DMSOp的分布趋势一致,其浓度从表层到底层随水深增加浓度降低,表层水团DMSOd和DMSOp浓度均在55 nmol/L以上,底层水团则低于25 nmol/L。从水团分析发现海盆区各水团DMSO受DMS氧化和浮游植物合成影响较大;中陆架区表层暖水主要受生物生产控制;北部内陆架区阿拉斯加沿岸水和白令海陆架水高于阿纳德尔水。
[Abstract]:Biogenic sulfide is produced by biological in nature, or by a sort of sulfur substance transformation, they play vital role in the global sulfur cycle. Two methyl sulfide (Dimethylsulfide, DMS) as the most important volatile sulfide in the oceans, the global climate change and global environmental problems and the acid rain can play an effect very important. Beta two methyl mercaptopropionic acid salt (Dimethylsulfoniopropionate, DMSP) and two methyl sulfoxide (Dimethyl sulfoxide, DMSO) were used as the precursors of DMS and oxidation products, to a large extent affects the content and distribution of DMS in seawater in the ocean water. As the important functions of the water unit the nature of the difference, directly affects the biogeochemical process of biogenic sulfide. Therefore, the temporal and spatial distribution characteristics based on the characteristics of water mass of biogenic sulfide and its influencing factors and help To grasp the influence mechanism of biogenic sulfide distribution more accurately, so as to provide new ideas for the research of marine biogenic sulfur effects on climate and environment. The polar, sub polar sea can enlarge the micro effect caused by global climate change, so as to effectively indicative effect. This paper based on the 5~7 Chinese Arctic scientific expedition the Bering Sea survey experimental data, based on the analysis of the water mass division, the Bering Sea water source (DMS, DMSP, DMSO, sulfide) temporal variation and influence factors. The main results are as follows: 1, the Bering Sea basin area has 3 water masses, namely the upper water, middle water and deep water, which the upper water, high temperature, low salinity, high dissolved oxygen, high chlorophyll, low nutrient characteristics; the main characteristics of middle water temperature, among other elements of concentration between upper water and deep water; deep water with low temperature, High salt, low dissolved oxygen and high nutrient, low chlorophyll characteristics, especially the silicate concentration than similar sea with depth of water is much higher in the Bering Sea shelf area. There are 4 water, namely the Bering Sea slope water, Bering Sea shelf water mass, the shelf surface warm water and mixed water, degeneration. The shelf surface warm water with high temperature, low salt, low nutrient, low chlorophyll characteristics; slope water has high nutrient, low chlorophyll characteristics; shelf water mass with low temperature, high dissolved oxygen, high chlorophyll characteristics; the nature between Lu Poshui and the cold water mass mixing modified water. The northern inland shelf to distinguish 3 water masses that is, Anadyr water, Alaska coastal water and the Bering Sea shelf water, Anadyr water with low temperature, high salt, high nutrient, low chlorophyll, low dissolved oxygen; Alaska coastal water is high temperature, low salt, low nutrients; the main characteristics of Bering Sea shelf water is high Dissolved oxygen, high chlorophyll. In addition, the Bering Sea region in 2012 for cold years (warmer years low 2~3 ~ C), 20142016 years for the warm years, so the water temperature in 2012 2012 for a minimum of.2, the Bering Sea cold years (warmer years low 2~3 ~ C), 20142016 years for the warm years. Affected by this the Bering Sea, two methyl sulfide concentration and biological turnover rate less than 2012 in 2014 and 2016, the exception is the northern region of the inner continental shelf of the concentration of DMSP was more than 2012 2014 and 2016, and DMSP may act as intracellular cryoprotectants. Two methyl sulfide biological production rate is slightly higher than the consumption rate, and the production and consumption trend rate the spatial distribution trend. The level of DMSO in the Bering Sea basin is in the continental shelf of the northern shelf region; DMSP: in the continental shelf area of the northern inland basin shelf area; the level of DMS.3 distribution is irregular, the Bering Sea basin, the water content of each group size for DMS The upper layer: deep water of water, the water concentration of the average values are between 5~15,2~8 and 0~1 nmol/L; in the basin near the northern slope region of DMS superstatum by cyclone type vortex water tongue has obvious high value downward trend; the water masses average DMSPd concentration between 2~35 nmol/ L and DMSPp in average 6~110 nmol/L; influence the distribution of upper water and intermediate water DMS and DMSPd mainly by Chl-a, deep water temperature and salt stress distribution of DMS and DMSPd. In the continental shelf area, surface warm water DMS and higher concentrations of DMSP, DMS, DMSPd and DMSPp respectively in 2~11,20~40 and 27~87 nmol/L; Lu Poshui and mixed water the average value of 0~2,2~40 and 18~78 respectively in nmol/L; the continental shelf of the cold water mass concentration is relatively low, the average value of 0~2,1~18 and 14~50 respectively in nmol/L; the warm water, cold water mass and the Bering Sea shelf slope water DMS and DMSP distribution controlled factors The complex, mixed water degeneration affected by Chl-a obviously. The northern inland shelf area, Anadyr water DMS and the lowest DMSP concentration, DMS, DMSPd and DMSPp respectively in 0~3,12~28 and 20~80 nmol/L; high Bering Sea shelf water and Alaska coastal water, the average value of 1~15,12~47 and 44~120 nmol/L respectively in the Bering Sea shelf water and DMS; DMSP effects of temperature and salinity, coastal water and Anadyr water factors in Alaska more complex.4, consistent with the distribution trend of DMSOd in the Bering Sea and DMSOp, its concentration from the surface layer to the bottom layer increases with the water depth decreased the concentration of DMSOd and DMSOp, surface water mass concentration was above 55 nmol/L, the bottom water was less than 25 nmol/L. from the analysis of water masses found basin the water masses of DMSO affected by DMS oxidation and synthesis of phytoplankton; in the continental shelf area of subsurface warm water is mainly affected by the biological production control; the northern inland area of Alaska coastal water and the Bering shelf Sea and sea shelf water is higher than Anadyr water.

【学位授予单位】:国家海洋局第一海洋研究所
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P734

【相似文献】

相关期刊论文 前10条

1 萨楚拉;刘桂香;包刚;包玉海;王牧兰;道日那;;近10年新疆积雪面积时空变化研究[J];测绘科学;2013年01期

2 萨楚拉;刘桂香;包刚;包玉海;王牧兰;;近十年蒙古高原积雪面积时空变化研究[J];内蒙古师范大学学报(自然科学汉文版);2012年05期

3 朱利凯;蒙吉军;;内蒙古中部地区近40年来降水时空变化[J];干旱区研究;2010年04期

4 张桂华,周永吉,潘华盛;20世纪80年代以来黑龙江省气候变暖的时空变化[J];黑龙江水专学报;2003年01期

5 孙才志;李明昱;;辽宁省海岸线时空变化及驱动因素分析[J];地理与地理信息科学;2010年03期

6 马丽君;孙根年;马耀峰;王洁洁;;气候舒适度对热点城市入境游客时空变化的影响[J];旅游学刊;2011年01期

7 萨楚拉;刘桂香;包刚;包玉海;王牧兰;;内蒙古积雪面积时空变化及其对气候响应[J];干旱区资源与环境;2013年02期

8 穆振侠;姜卉芳;;2001年至2010年昆马力克河流域积雪时空变化特性分析[J];资源科学;2013年01期

9 李景林;张山清;普宗朝;王命全;王胜兰;赵书琴;;近50a新疆气温精细化时空变化分析[J];干旱区地理;2013年02期

10 姚鲁烽;何书金;赵歆;;地理学时空变化类论文的写作[J];地理学报;2013年07期

相关会议论文 前10条

1 萨楚拉;刘桂香;包刚;包玉海;王牧兰;道日那;;近十年甘肃积雪面积时空变化研究[A];风险分析和危机反应的创新理论和方法——中国灾害防御协会风险分析专业委员会第五届年会论文集[C];2012年

2 查良松;郭永芳;吉中会;彭洋;;近50年安徽省气温时空变化研究[A];中国地理学会百年庆典学术论文摘要集[C];2009年

3 黄成荣;何亚萍;马雷凯;;1960—2009年新疆气温时空变化及影响因子分析[A];第28届中国气象学会年会——S14气候环境变化与人体健康[C];2011年

4 王敏珍;郑山;王式功;尚可政;;1951-2008年中国主要城市风效指数的时空变化趋势[A];第28届中国气象学会年会——S14气候环境变化与人体健康[C];2011年

5 张清雨;;近30年秦岭山地商洛段林地类型时空变化及其驱动力[A];中国地理学会百年庆典学术论文摘要集[C];2009年

6 陈效逑;王恒;;1982-2003年内蒙古植被带和植被覆盖度的时空变化[A];中国地理学会百年庆典学术论文摘要集[C];2009年

7 张淳民;屈燕;栗彦芬;;基于GOSAT卫星遥感探测的CO_2和CH_4时空变化特性分析[A];2012年西部光子学学术会议论文摘要集[C];2012年

8 王N段,

本文编号:1394966


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1394966.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户210ac***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com