q-Jacobi-Stirling数
发布时间:2018-01-11 00:02
本文关键词:q-Jacobi-Stirling数 出处:《大连海事大学》2017年硕士论文 论文类型:学位论文
更多相关文章: Stirling 数 q-Jacobi-Stirling 数 q-Legendre-Stirling 数 递推关系 矩阵表示
【摘要】:Legendre-Stirling数是在Everitt探究经典二阶勒让德微分表达式的谱理论时提出来的,而且Legendre-Stirling数是拉格朗日对称式中勒让德表达式的积分复合幂的系数.Jacobi-Stirling数的概念是Everitt在2007年研究经典二阶雅各比微分表达式的谱理论时首次提出的.Jacobi-Stirling数是雅各比对称式中勒让德表达式的积分复合幂的系数.2012年,Mansour提出了q-类Stirling数并对其进行了相关的研究.由于 Jacobi-Stirling 数、Legendre-Stirling 数和 类 Stirling 数与 Stirling 数有很多相似的性质,因此,受到很多的人关注.本文基于q-类Stirling数定义中基本函数及 Jacobi-Stirling 数和 Legendre-Stirling 数表达形式,提出了q-Jacobi-Stirling 数和q-Legendre-Stirling数的概念,并研究了其相关性质.本文的主要工作为以下三个方面:(1)通过基本函数[x]q=1-qx/1-q,引入新的"和函数"提出了两类q-Legendre-Stirling数、q-Jacobi-Stirling数的概念,推导出了它们满足的递推关系.(2)给出了 第一类 q-Legendre-Stirling 数和第一类 q-Jacobi-Stirling 数的一种矩阵表示,证明了 q-Legendre-Stirling数和q-Jacobi-Stirling数的若干组合恒等式.(3)研究了两类q-Legendre-Stirling数之间的关系、两类q-Jacobi-Stirling数之间的关系,丰富了类Stirling数的研究成果.
[Abstract]:Legendre-Stirling number is proposed when Everitt explores the spectrum theory of classical Legendre differential expression. And the concept of Legendre-Stirling number is the coefficient of the integral compound power of Legendre expression in Lagrange symmetry, and the concept of Jacobi-Stirling number is Everi. The Jacobi-Stirling number, first proposed in 2007 when he studied the spectral theory of the classical second-order Yakubi differential expression, is the integral compound power of the Legendre expression in Yakubi's symmetric formula. Coefficient. 2012. Mansour put forward q-like Stirling number and studied it. Because of Jacobi-Stirling number. Legendre-Stirling numbers and similar Stirling numbers have many similar properties with Stirling numbers, so. This paper is based on the definition of q-class Stirling numbers and basic functions and Jacobi-Stirling numbers. Legendre-Stirling number expression. The concepts of q-Jacobi-Stirling number and q-Legendre-Stirling number are proposed. The main work of this paper is as follows: 1) pass through the basic function. [In this paper, the concept of q-Legendre-Stirling number and q-Jacobi-Stirling number is proposed by introducing a new "sum function". The recursion relation that they satisfy. A matrix representation of q-Legendre-Stirling numbers and q-Jacobi-Stirling numbers of the first kind is given. Some combinatorial identities of q-Legendre-Stirling number and q-Jacobi-Stirling number are proved. The relationship between two kinds of q-Legendre-Stirling numbers is studied. The relationship between two classes of q-Jacobi-Stirling numbers enriches the research results of the similar Stirling numbers.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157
【参考文献】
相关期刊论文 前4条
1 李新社;姚俊萍;;第一类Stirling数公式的猜想及其求解方法[J];哈尔滨师范大学自然科学学报;2014年03期
2 齐登记;;无符号第一类Stirling数的组合数表示[J];青岛科技大学学报(自然科学版);2011年03期
3 王红;杨雅琴;王艳辉;;第一类Stirling数和第二类Stirling数的关系式[J];高师理科学刊;2008年06期
4 杨海明;何世安;镇松林;苏政鹏;;斯特林制冷机振动数学模型的Laplace变换及仿真[J];低温与超导;2008年04期
,本文编号:1407296
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1407296.html