黄河口邻近海域浮游植物群落结构时空变化及其对调水调沙的响应

发布时间:2018-01-23 22:38

  本文关键词: 浮游植物 群落结构 黄河口 调水调沙事件 环境因子 出处:《中国科学院烟台海岸带研究所》2017年硕士论文 论文类型:学位论文


【摘要】:河口是连接陆地和海洋生态系统的重要交错区,由于人类在河流上、中游建造大坝、水渠等蓄水工程,使得河流入海泥沙通量大幅减少,对河口生态系统形成显著影响。本研究基于黄河调水调沙工程,于2013年4月、6月和7月(调水调沙发生)、9月在黄河口海域,以及2014年5月、9月在莱州湾海域,分别开展了6个航次的野外调查工作。收集并检测了温度、盐度、营养盐、叶绿素a以及浮游植物群落结构等参数,利用统计方法分析了浮游植物群落结构以及生物量与环境因子之间的相关关系,对比了调水调沙前后黄河口及其临近海域环境因子的变化,以及浮游植物群落的响应特征。研究结果不仅有助于阐明黄河调水调沙事件对邻近海域浮游植物群落结构的影响,而且可以为保护黄河口及莱州湾生态系统健康提供基础资料与理论依据。主要研究结果表明:黄河口海域环境因子的时空变化特征:调水调沙前(4月份),平均温度和盐度分别为8.01°C和26.2,高温低盐分布在黄河口北部海域;营养盐结构分析表明,不存在溶解性无机氮(DIN)限制,但存在溶解性无机磷(DIP)限制和溶解性硅酸盐(DSi)限制。调水调沙后(6、7、9月份),平均海水温度7月份最高(25.2°C),平均盐度值7月份最低(20.8),低盐区域主要出现在邻近河口近岸海域;营养盐结构分析表明,不存在DIN限制,但存在DIP限制,DSi限制只在6月份河口西北部的海域内出现。浮游植物群落结构的时空变化特征:调水调沙前,共鉴定出42种浮游植物,优势种主要是具槽帕拉藻;细胞总丰度为1.65×105 cells/L,分布较为平均;浮游植物多样性指数(H′)平均值为1.14,高值主要分布在黄河口西北方向海域;叶绿素a的平均浓度为2.98μg/L,高值主要分布在黄河口西南方向海域。调水调沙后,3个月分别鉴定出95、100、56种浮游植物,受盐度变化影响,6、7月份优势种中除硅藻类增加了绿藻类(衣藻和栅藻),9月份优势种主要是圆筛藻;细胞总丰度6月份最高(27.0×105 cells/L),高值主要分布在河口东北方向海域;H′平均值最高出现在7月份(3.05),高值主要分布在河口正北海域;叶绿素a的平均浓度在9月份达到最高(15.5μg/L),高值主要分布在黄河口西北以及东南方向海域。通过浮游植物群落结构与环境因子之间的相关性进行典范对应分析(CCA),发现调水调沙前,温度、din、dip是影响浮游植物群落结构的主要因子;调水调沙后,盐度、dsi、dip是影响浮游植物群落结构的主要因子。对比调水调沙前后环境因子与浮游植物群落的时空变化特征可知,实施调水调沙,使得调查海域盐度有明显的降低,硅限制得到有效缓解;浮游植物生物量和多样性指数都有所提升,其中淡水藻类由于盐度的降低而增多,削弱了硅藻的竞争优势,使硅藻在物种组成中所占比例约降低了30%,空间上淡水藻有向河口东南部莱州湾海域方向分布趋势。进而,通过对莱州湾区域的调查,进一步探究调水调沙前后,环境条件变化对整个海湾的影响。莱州湾海域环境因子的时空变化特征:调水调沙前(5月份),平均温度和盐度分别为14.8°c和27.9,低盐区域分布在黄河口与小清河河口之间海域;营养盐结构分析表明,不存在din限制,仅1个站位存在dip的相对限制,但80%的站位存在dsi限制。调水调沙后(9月份),平均温度和盐度值分别为25.8°c和28.7,低盐区域分布在黄河口与小清河河口之间海域;营养盐结构分析表明,不存在din限制,86.7%的站位存在dip的相对限制,仅有1个站位存在dsi限制。浮游植物群落结构的时空变化特征:调水调沙前,共鉴定出87种浮游植物,优势种主要是舟形藻;细胞总丰度为1.80×105cells/l,高值区分布在湾中底部海域;h′平均值为2.47,高值主要分布在湾口海域;叶绿素a的平均浓度为4.62μg/l,高值主要分布在小清河河口海域。调水调沙后,共鉴定出112种浮游植物,优势种主要是硅藻类,种类较多但无优势度突出的优势种;细胞总丰度为3.40×105cells/l,高值区分布在湾边缘沿岸海域;h′平均值为3.28,高值主要分布在黄河口与小清河河口之间海域;叶绿素a的平均浓度为4.35μg/l,高值主要分布在白浪河以及胶莱河河口海域。通过浮游植物群落结构与环境因子之间的相关性进行典范对应分析(cca),发现调水调沙前,温度、din、dip是影响浮游植物群落结构的主要因子;调水调沙后,dsi、dip是影响浮游植物群落结构的主要因子。对比调水调沙前后环境因子与浮游植物群落的时空变化特征可知,实施调水调沙,未造成盐度的变化,dsi的补充使dsi限制得到缓解,浮游植物生物量和多样性指数有所提高。总体来看:调水调沙不仅影响黄河口海域,也影响到莱州湾海域。该事件发生后黄河水沙可影响黄河口的西北部到莱州湾湾底的海域,影响可以持续到9月份。
[Abstract]:The estuary is an important ecotone between land and marine ecosystems, due to human beings in the river, the middle reaches of dams, canals and other water storage projects, making the river sediment fluxes significantly reduced, the formation of significant effects on the estuarine ecosystem. This research project of sand and water diversion based on the Yellow River, in April 2013, June and July (water diversion in September, Sha) occurs in the estuary of Yellow River, and in May 2014, September in Laizhou bay were carried out 6 cruises of the field investigation work. Collection and detection of temperature, salinity, nutrients, chlorophyll a and phytoplankton community structure parameters, the use of statistical methods to analyze the relationship between phytoplankton community structure and biological quantity and environmental factors, and compare the change before and after the water and sand diversion Yellow River Estuary and its adjacent sea areas and the environmental factors, phytoplankton community response characteristics. The research results can not only help. Ming the Yellow River water sediment regulation event on phytoplankton community structure in the adjacent waters, and can provide the basic data and the theoretical basis for the protection of the Yellow River Estuary and Laizhou Bay ecosystem health. The research results show that the temporal and spatial variation characteristics of Yellow River Estuary environmental factors: water and sediment regulation before (April), the average temperature and salinity were 8.01 C and 26.2 degrees, high temperature and low salinity distribution in the northern waters of the Yellow River Estuary; nutrient analysis showed that the structure does not exist, dissolved inorganic nitrogen (DIN), but the presence of dissolved inorganic phosphorus (DIP) and dissolved silicate (DSi). The water sediment regulation after (6,7,9 months), the average sea temperature the highest in July (25.2 degrees C), the average salinity lowest in July (20.8), low salt area mainly occurred in the adjacent estuary; nutrient structure analysis shows that, without limitation of DIN, but the DIP limit, DSi Limited in June West estuary Northern area. Temporal and spatial variation of phytoplankton community structure: water and sediment regulation, we identified 42 species of phytoplankton, the dominant species is mainly paralia sulcata algae; total cell abundance was 1.65 * 105 cells/L distribution is average; phytoplankton diversity index (H ') the average value is 1.14, high value the main distribution area in the Yellow River Estuary northwest; chlorophyll a average concentration is 2.98 g/L, the high value is mainly distributed in the Yellow River estuary waters southwest. The water sediment regulation after 3 months were identified 95100,56 species of phytoplankton, affected by salinity changes, 6,7 month in addition to dominant species of diatoms increased algae (Chlamydomonas and in September, Scenedesmus) is the dominant species of Coscinodiscus; total cell abundance was highest in June (27 * 105 cells/L), high value is mainly distributed in the Northeast sea estuary; H' average value is the highest in July (3.05), a high value is mainly distributed in the estuary The North Sea; chlorophyll a concentrations reached the highest in September (15.5 g/L), high values are mainly distributed in the northwest and southeast area. Canonical correspondence analysis the correlation between phytoplankton community structure and environmental factors (CCA), found that before the water sediment regulation, temperature, DIN, dip are the main factors that influence the phytoplankton community structure; regulation of water and sediment, salinity, DSI, dip is the main factor affecting the structure of phytoplankton community. Contrast before and after the water and sediment environmental factors and phytoplankton community characteristics of temporal and spatial variation of the implementation of the regulation of water and sediment, the salinity in the survey had significantly decreased, effectively alleviate the silicon limitation of phytoplankton; the biomass and diversity index are improved, the freshwater algae increased due to the decrease of salinity, weaken the competitive advantage of the diatom diatom, about 3 in the occupied proportion of reduced species composition 0%, the space distribution of freshwater algae to the southeast direction of estuarine waters of the Gulf of Laizhou trend. Furthermore, through the investigation of the Laizhou Bay area, to further explore the regulation of water and sediment before and after effects of the environmental conditions of the bay. The temporal and spatial variation characteristics of Laizhou Bay Environmental factors: water and sediment regulation before (May). The average temperature and salinity were 14.8 ~ C and 27.9, the regional distribution in the low salt waters between the Huanghe and the Xiaoqing River Estuary; nutrient structure analysis shows that, there is no DIN limit, only 1 stations are relatively limited dip, but 80% of the stations are DSI. The water sediment regulation after (September), average temperature and salinity values were 25.8 ~ C and 28.7, the regional distribution in the low salt waters between the Huanghe and the Xiaoqing River Estuary; nutrient structure analysis shows that, without limitation of DIN, 86.7% of the stations there is relatively limited dip, only 1 stations are planktonic DSI limit. Temporal and spatial variation of plant community structure: water and sediment regulation, we identified 87 species of phytoplankton, the dominant species is mainly Navicula; total cell abundance was 1.80 * 105cells/l and the distribution of high value area at the bottom of the Gulf waters; H 'average value is 2.47, the high value area is mainly distributed in the mouth of the Bay; the average chlorophyll the concentration of a is 4.62 g/l, the high values are mainly distributed in the Xiaoqing River Estuary. The water sediment regulation, we identified 112 species of phytoplankton, the dominant species were mainly diatoms, dominant species but no more prominent dominance; total cell abundance was 3.40 * 105cells/l, the high value area of distribution in the edge of the Bay coastal waters; H' average value is 3.28, the high value is mainly distributed at the area between the Yellow River and Xiaoqinghe estuary; chlorophyll a average concentration is 4.35 g/l, the high values are mainly distributed in the river and Jiaolai River Estuary. The phytoplankton community structure and environmental factors The correlation and canonical correspondence analysis (CCA), found that before the water sediment regulation, temperature, DIN, dip is the main factor affecting the structure of phytoplankton community; water sediment regulation, DSI, dip is the main factor affecting the structure of phytoplankton community. Contrast before and after the water and sediment environmental factors and phytoplankton community characteristics of temporal and spatial variation the implementation of the regulation of water and sediment, caused no changes in salinity, DSI supplement to DSI restrictions eased, phytoplankton biomass and diversity index increased. Overall: water sediment regulation not only affects the Yellow River mouth, but also affect the waters of the Gulf of Laizhou. After the incident in the Yellow River in northwest water sand effect to the end of the Gulf of Laizhou Bay waters, can last until September.

【学位授予单位】:中国科学院烟台海岸带研究所
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q948

【相似文献】

相关期刊论文 前10条

1 邬红娟,郭生练,胡传林,刘跃;水库浮游植物群落动态的人工神经网络方法[J];海洋与湖沼;2001年03期

2 孙军,刘东艳,杨世民,郭健,钱树本;渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究[J];海洋与湖沼;2002年05期

3 邬红娟;任江红;卢媛媛;;武汉市湖泊浮游植物群落排序及水质生态评价[J];湖泊科学;2007年01期

4 田琪;陈政;;洞庭湖浮游植物群落结构调查与分析[J];内陆水产;2007年08期

5 张玉宇;吕颂辉;齐雨藻;;2003~2004年大亚湾澳头养殖区水域浮游植物群落结构及数量变动特征[J];海洋环境科学;2008年02期

6 林峰竹;吴玉霖;于海成;线薇微;;2004年长江口浮游植物群落结构特征分析[J];海洋与湖沼;2008年04期

7 李扬;吕颂辉;江天久;李欢;萧云朴;尤胜炮;;2006年春夏期间浙江南麂海域浮游植物群落结构特征[J];亚热带植物科学;2009年01期

8 宋淑华;王朝晖;付永虎;谷阳光;;大亚湾大鹏澳海域微表层浮游植物群落研究[J];海洋环境科学;2009年02期

9 刘冬燕;林文鹏;赵敏;;苏州河浮游植物群落结构特征[J];长江流域资源与环境;2009年10期

10 钱奎梅;王丽萍;陈宇炜;;太湖浮游植物群落的有机碳生产及其影响因子分析[J];湖泊科学;2009年06期

相关会议论文 前10条

1 黄邦钦;;中国海典型海区浮游植物群落结构及其对中尺度物理过程的响应[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年

2 杨柳;刘正文;陈非洲;;不同生物修复措施对浮游植物群落影响的比较研究[A];第二届全国藻类多样性和藻类分类学术研讨会论文摘要集[C];2010年

3 李涛;刘胜;黄良民;练健生;严岩;王友绍;;大亚湾核电站温排水对区域浮游植物群落的影响[A];中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编[C];2007年

4 吴琼;钦娜;吴波;李晓波;王全喜;;上海市滴水湖浮游植物群落结构调查[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

5 钟超;黄邦钦;;2010年春季南海浮游植物群落结构[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

6 黄邦钦;;南海中尺度物理过程对浮游植物群落结构的影响[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

7 朱为菊;李晓波;周晓梅;王站付;陶晶晶;王全喜;;上海滴水湖浮游植物群落结构的研究[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

8 岑竞仪;吕颂辉;;海口湾浮游植物群落结构特征[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

9 何学佳;高亚辉;彭兴跃;;应用光合色素标记物研究2001年2月-6月厦门西海域浮游植物群落结构[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年

10 欧林坚;林丽贞;王丹;杨听林;黄邦钦;;台湾海峡及邻近海域浮游植物群落的磷酸盐胁迫与限制[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

相关博士学位论文 前7条

1 孙静;变性梯度凝胶电泳技术在微藻鉴定及浮游植物群落结构研究中的应用[D];中国海洋大学;2009年

2 肖利娟;华南地区两座大型水库浮游植物群落与演替机制比较[D];暨南大学;2011年

3 金海燕;近百年来长江口浮游植物群落变化的沉积记录研究[D];浙江大学;2009年

4 游江涛;热带亚热带典型水库和湖泊中浮游植物群落结构与颗粒物脂肪酸组成特征的研究[D];暨南大学;2006年

5 赵秀侠;太湖蓝藻水华形成过程中的浮游植物群落动态及其驱动因素研究[D];安徽大学;2013年

6 李秋华;大镜山水库水质改善生态工程效果及浮游植物群落动态特征[D];暨南大学;2008年

7 孙育平;营养盐加富、滤食性鱼类和浮游动物对水库浮游植物群落结构的影响[D];暨南大学;2010年

相关硕士学位论文 前10条

1 苏芝娟;调水调沙对黄河口邻近海域浮游植物群落和环境的影响研究[D];河北师范大学;2015年

2 朱明莹;宁夏沙湖浮游植物群落结构及其与环境因子的相关性研究[D];东北林业大学;2015年

3 张力文;小兴凯湖浮游植物群落结构特征研究[D];东北林业大学;2015年

4 庄道阔;镜泊湖流域浮游植物群落和功能类群特征及水质评价[D];河北大学;2015年

5 李景;温棚高产凡纳滨对虾池塘浮游植物群落和水质因子的特征[D];华中农业大学;2015年

6 张松艳;上海港浮游植物的季节变化与时空分布特征[D];上海海洋大学;2015年

7 欧腾;贵州3座深水水库浮游植物群落结构动态变化及影响因素[D];贵州师范大学;2015年

8 乔芮;基于镜检和浮游植物色素分析的贝类食性研究[D];上海海洋大学;2015年

9 吴芳仪;华阳河湖群和升金湖浮游植物群落结构的研究[D];安徽大学;2016年

10 李沂幰;白石水库浮游植物群落结构的时空格局及粒径谱研究[D];大连海洋大学;2016年



本文编号:1458418

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1458418.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a5ff0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com