三种不同结构的叶瓜参鞘脂对脂肪细胞分化和脂质代谢的调控作用研究
本文关键词: 叶瓜参 3T3-L1前脂肪细胞 海参鞘脂 分化 β-catenin 脂质代谢 AMPK 出处:《中国海洋大学》2015年硕士论文 论文类型:学位论文
【摘要】:海参鞘脂是海参体内的一类重要脂质,主要包括脑苷脂、神经酰胺及长链碱等。其中,海参脑苷脂由神经酰胺和糖基组成,神经酰胺是由长链碱与长链脂肪酸经脱水以酰胺键连接而成。研究发现,海参鞘脂具有抗肿瘤、改善阿尔茨海默症、改善糖脂代谢等功效。脂肪细胞分化及脂质代谢紊乱是导致肥胖等代谢综合征的重要因素,目前关于海参鞘脂对脂质代谢的影响已有初步报道,但其作用机制仍未阐明,且关于海参鞘脂中起作用的活性片段也没有明确的定论。本文以鞘脂含量较高的叶瓜参(Cucumaria frondosa)为实验材料,分离、制备了叶瓜参脑苷脂(Cerebroside from the sea cucumber C.frondosa, Cf-Cb)、神经酰胺(Ceramide from the sea cucumber C. frondosa, Cf-Cm)及长链碱(Long-chain base from the sea cucumber C. frondosa, Cf-LCB) 3种鞘脂,系统研究了其调控脂肪细胞分化与脂质代谢的作用及其机制,并阐明了3种叶瓜参鞘脂中起作用的活性片段。主要研究结果如下:采用传统鸡尾酒法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞,研究了3种叶瓜参鞘脂对脂肪细胞分化的影响。油红O染色结果显示,Cf-Cb、Cf-Cm和Cf-LCB均能显著抑制3T3-L1前脂肪细胞分化,且对分化早期的抑制效果最强。C/EBPα和PPARγ是脂肪细胞分化末期最重要的转录调控因子。qRT-PCR及Western blotting结果表明,Cf-Cb、Cf-Cm和Cf-LCB对C/EBPa和PPARγ的mRNA和蛋白表达均具有显著的抑制作用。WNT/β-catenin通路在脂肪细胞分化中具有重要作用,激活后显著抑制脂肪细胞分化。qRT-PCR结果表明,Cf-Cb、Cf-Cm和Cf-LCB显著地上调WNT/β-catenin通路关键基因FZ1、LRP5、LRP6、β-catenin、 CCND1和c-myc mRNA表达,但对Wnt10b及GSK3β的表达无显著性影响。Western blotting结果显示,Cf-Cb、Cf-Cm和Cf-LCB显著促进LRP6和β-catenin的蛋白表达,提高细胞核内β-catenin含量,提示3种叶瓜参鞘脂均能促进WNT/β-catenin通路的激活。21H7是β-catenin的抑制剂,可以特异性的抑制WNT/β-catenin通路的激活。结果表明,21H7干预细胞后,3T3-L1前脂肪细胞分化率,C/EBPa和PPARy的mRNA和蛋白表达均提高;而P-catenin蛋白表达,细胞核内P-catenin蛋白含量,CCND1和c-myc的mRNA表达均显著降低。Cf-Cb、 Cf-Cm和Cf-LCB均能显著改善21 H7的作用效果,进一步验证其可促进WNT/β-catenin通路的激活。综上所述,3种叶瓜参鞘脂通过激活WNT/β-catenin通路抑制3T3-L1前脂肪细胞分化。以3T3-L1成熟脂肪细胞为研究对象,研究3种叶瓜参鞘脂对脂肪细胞脂质代谢的影响。结果表明,Cf-Cb、Cf-Cm和Cf-LCB均显著降低细胞中TG含量,升高培养上清中FFA含量,提示其能抑制脂质累积,促进脂质分解。脂质合成和分解的关键酶是调控脂质代谢的重要因子,是目前重要的肥胖候选研究基因。Western blotting结果显示,Cf-Cb、Cf-Cm和Cf-LCB均能显著抑制脂质合成关键基因GPAT和FAS的蛋白表达,增加脂质分解关键基因HSL和CPT-1的蛋白表达。AMPK是细胞能量代谢的总开关,在调控细胞能量代谢中起到重要的作用。Western blotting结果表明,Cf-Cb、Cf-Cm和Cf-LCB均显著促进AMPK及ACC蛋白的磷酸化,提示其能激活AMPK通路。Compound C是AMPK蛋白的抑制剂,可以降低AMPK的活性。结果表明,Compound C干预下,TG含量、GPAT和FAS的蛋白表达均升高;而FFA含量,HSL和CPT-1蛋白表达,AMPK和ACC的磷酸化水平均降低。Cf-Cb、Cf-Cm和Cf-LCB均显著改善Compound C的作用效果,进一步验证其能激活AMPK通路。综上所述,3种叶瓜参鞘脂通过激活AMPK通路抑制脂质合成,促进脂质分解,从而改善脂肪细胞的脂质代谢。通过建立浓度相同或长链碱含量相同的3种鞘脂两个作用体系,比较研究了Cf-Cb、Cf-Cm和Cf-LCB的作用效果,以期阐明3种叶瓜参鞘脂中起作用的活性片段。结果表明,当3种鞘脂浓度相同时,其抑制3T3-L1前脂肪细胞细胞分化,促进WNT/β-catenin通路的激活,改善脂质代谢和激活AMPK通路的作用效果以Cf-LCB为最优。而当3种鞘脂长链碱含量相同时,Cf-Cb、Cf-Cm和Cf-LCB抑制3T3-L1前脂肪细胞细胞分化,促进WNT/β-catenin通路的激活,改善脂质代谢和激活AMPK通路的作用效果相当,提示3种叶瓜参鞘脂中起作用的活性片段为长链碱。本文首次系统研究了叶瓜参鞘脂对脂肪细胞分化和脂质代谢的调控作用及其机制,并进一步阐明了其中起作用的活性片段,为海参鞘脂的进一步开发利用提供了科学基础和理论依据。
[Abstract]:Sea cucumber is a kind of important sphingolipid in vivo including sea cucumber lipid, cerebroside, ceramide and long chain bases. The sea cucumber cerebroside by ceramide and glycosyl composition, ceramide is composed of long chain base and long chain fatty acid by dehydration with amide linkages and. The study found that sphingolipids with anti sea cucumber to improve cancer, Alzheimer's disease, improve glucose and lipid metabolism and other effects. Cell differentiation and lipid metabolism disorder is an important factor leading to obesity and metabolic syndrome, the sea cucumber sphingolipid effect on lipid metabolism has been reported, but the mechanism has not been clarified with, and a sea cucumber in the role of the sphingolipid active fragment is not clear conclusion. The higher content of ginseng leaf melon sphingolipids (Cucumaria frondosa) as experimental materials, separation, ginseng leaf melon cerebroside was prepared (Cerebroside from the sea cucumber C.frondosa, Cf-Cb), Ceramide (Ceramide from the sea cucumber C. frondosa, Cf-Cm) and long chain bases (Long-chain base from the sea cucumber C. frondosa, Cf-LCB) 3 kinds of sphingolipids, studied the effect and mechanism of the regulation of adipocyte differentiation and lipid metabolism, and expounds 3 kinds of active bits of leaf ginseng melon sphingolipid. The main results are as follows: induced differentiation of 3T3-L1 preadipocytes into mature adipocytes by using traditional cocktail method, the influence of 3 kinds of melon leaf ginseng sphingolipids on adipocyte differentiation. Oil red O staining showed that Cf-Cb, Cf-Cm and Cf-LCB significantly inhibited the differentiation of 3T3-L1 preadipocytes, and the inhibitory effect on the differentiation of early the strongest.C/EBP PPAR alpha and gamma is the most important stage of adipocyte differentiation and transcription factor.QRT-PCR and Western blotting results showed that Cf-Cb, Cf-Cm and Cf-LCB on C/EBPa and PPAR gamma mRNA and protein The expression inhibition of.WNT/ beta -catenin pathway significantly plays an important role in adipocyte differentiation, activation significantly inhibited the differentiation of.QRT-PCR adipocytes results showed that Cf-Cb, Cf-Cm and Cf-LCB significantly up-regulated the expression of WNT/ beta -catenin pathway key genes FZ1, LRP5, LRP6, CCND1 and beta -catenin, c-myc mRNA expression, but the expression of Wnt10b and there was no significant effect of GSK3 beta.Western blotting showed that Cf-Cb, Cf-Cm and Cf-LCB significantly promoted LRP6 and beta -catenin protein expression, increase the content of -catenin beta cells, suggesting that the 3 leaves of melon ginseng can promote the activation of.21H7 WNT/ sphingolipid beta -catenin pathway inhibitor beta -catenin, can activate specific inhibition WNT/ beta -catenin pathway. The results showed that 21H7 cells after the intervention, the rate of fat cell differentiation of 3T3-L1, mRNA and protein expression of C/EBPa and PPARy were increased; and the expression of P-catenin protein, fine In the nucleus of P-catenin protein, the expression of CCND1 and c-myc mRNA were significantly decreased in.Cf-Cb, the effect of Cf-Cm and Cf-LCB can significantly improve the 21 H7, to further verify its can promote the activation of WNT/ beta -catenin pathway. To sum up, 3 kinds of inhibition of 3T3-L1 preadipocyte differentiation activation of WNT/ beta -catenin pathway through leaf Cucumaria sphingolipids. 3T3-L1 mature fat cells as the research object, effect of 3 kinds of melon leaf ginseng on adipocyte lipid metabolism of sphingolipids. The results showed that Cf-Cb, Cf-Cm and Cf-LCB were significantly decreased the content of TG in cell culture supernatant, increased FFA content, suggesting that it can inhibit lipid accumulation, promote lipid lipid synthesis and key enzyme decomposition. Decomposition is an important factor in the regulation of lipid metabolism, obesity is a candidate gene.Western blotting research results at present an important display, Cf-Cb, Cf-Cm and Cf-LCB can significantly inhibit lipid synthesis related genes in GPAT The expression of FAS and protein, increased lipolysis key genes HSL and CPT-1 protein expression of.AMPK is the master switch of cellular energy metabolism, play the role of the.Western blotting results showed that in the regulation of cellular energy metabolism in Cf-Cb, Cf-Cm and Cf-LCB were significantly promoted AMPK and ACC protein phosphorylation, suggesting that the activation of AMPK.Compound C pathway is an inhibitor of the AMPK protein, can reduce the activity of AMPK. The results show that the content of TG, Compound, C intervention, the expression of GPAT and FAS protein were increased; while the content of FFA, HSL and CPT-1 protein expression and phosphorylation levels of AMPK and ACC decreased.Cf-Cb, the effect of Cf-Cm and Cf-LCB were significantly improved Compound C, further validate that it could activate the AMPK pathway. To sum up, 3 kinds of inhibition of lipid synthesis in the activation of the AMPK pathway through leaf Cucumaria sphingolipid, promote lipolysis and improve lipid metabolism in fat cells through the construction. Set the same concentration or long chain alkali content of 3 kinds of sphingolipids in the same two system, a comparative study of the effect of Cf-Cb, Cf-Cm and Cf-LCB, in order to clarify the role of the 3 kinds of active fragment leaves Cucumaria sphingolipid. The results show that when the 3 kinds of sphingolipids in the same concentration, the inhibition of 3T3-L1 fat cells cell differentiation, promote the activation of WNT/ beta -catenin pathway, the effect of improving lipid metabolism and activation of the AMPK pathway in Cf-LCB is the best. When the content of long chain bases of 3 kinds of sphingolipids are same, Cf-Cb, Cf-Cm and Cf-LCB inhibited 3T3-L1 adipocyte differentiation, promote the activation of WNT/ beta -catenin pathway, considerable effect in improving the lipid the metabolism and activation of the AMPK pathway, suggesting that the 3 leaf ginseng melon in sphingolipid active fragment of long chain bases. This is the first study on the leaves of melon ginseng sphingolipids differentiation and lipid metabolism in fat cells and its regulation mechanism, and a Step toward elucidating the active fragment in which the role of, provide the scientific and theoretical basis for further development and utilization of sea cucumber sphingolipids.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:Q54
【相似文献】
相关期刊论文 前10条
1 何静,王平芳;脂肪细胞分化的分子机制研究进展[J];国外医学(生理、病理科学与临床分册);2004年05期
2 王宁;闫晓红;;脂肪细胞分化辅助调节因子的研究进展[J];生理科学进展;2009年04期
3 鞠大鹏;詹丽杏;;脂肪细胞分化及其调控的研究进展[J];中国细胞生物学学报;2010年05期
4 李名森;蔡东宏;;白色脂肪细胞分化分子机制研究进展[J];中山大学研究生学刊(自然科学.医学版);2013年01期
5 仇子龙,郭学敏,廖侃;脂肪细胞分化差异表达基因与其染色体所在遗传图位置的相关性分析[J];生物化学与生物物理学报;2001年01期
6 赵琳;脂肪细胞分化过程的细胞表型和分子事件[J];中国康复理论与实践;2002年11期
7 张崇本;脂肪细胞的分化及调控[J];生理科学进展;2004年01期
8 倪毓辉,郭锡熔,陈荣华;脂肪细胞分化的表型特征、分子标志和调控[J];国外医学(儿科学分册);2004年06期
9 张琨;李世敏;张丽君;彭光华;张声华;;脂肪细胞分化机制的研究进展[J];农产品加工(学刊);2007年02期
10 李振华,黄汝多;脂肪细胞分化作用及其分子调控机理[J];激光生物学报;2000年03期
相关会议论文 前10条
1 束刚;江青艳;傅伟龙;;脂肪细胞分化调控的研究进展[A];动物生理生化学分会第八次学术会议暨全国反刍动物营养生理生化第三次学术研讨会论文摘要汇编[C];2004年
2 张娟;唐红菊;王晓;周丽斌;;小檗碱抑制脂肪细胞分化的机制研究[A];中华医学会第十二次全国内分泌学学术会议论文汇编[C];2013年
3 刘峰;;脂肪细胞分化、功能与调控[A];细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉论文摘要集[C];2013年
4 潘杰;;脂肪细胞分化成熟中脂质调控因子的作用[A];第11届全国脂质与脂蛋白学术会议论文汇编[C];2012年
5 肖宏涛;刘毅;陈克明;;冻存复苏人脐带间充质干细胞体外扩增和向脂肪细胞分化的研究[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
6 肖宏涛;刘毅;陈克明;;冻存复苏人脐带间充质干细胞体外扩增和向脂肪细胞分化的研究[A];中华医学会烧伤外科学分会2009年学术年会论文汇编[C];2009年
7 张志威;荣恩光;史明欣;陈月婵;闫晓红;王宁;李辉;;鸡KLF2基因的表达分析和功能研究[A];中国的遗传学研究——遗传学进步推动中国西部经济与社会发展——2011年中国遗传学会大会论文摘要汇编[C];2011年
8 许金飞;洪尚宇;廖侃;;Akt是3T3L1前脂肪细胞分化和克隆扩增所必需的信号分子[A];中国细胞生物学学会第八届会员代表大会暨学术大会论文摘要集[C];2003年
9 武春艳;王宇祥;张志威;李辉;;过表达SREBP1基因对鸡脂肪细胞分化标志基因启动子活性的影响[A];中国畜牧兽医学会家禽学分会第九次代表会议暨第十六次全国家禽学术讨论会论文集[C];2013年
10 夏黎;季晨博;郭锡熔;;miRNA与脂肪细胞分化、肥胖[A];中华医学会第十七次全国儿科学术大会论文汇编(下册)[C];2012年
相关博士学位论文 前10条
1 黄家鑫;C/EBPβ在脂肪细胞分化过程中对自噬的调控及SC01在肥胖相关代谢性疾病中的机制研究[D];复旦大学;2014年
2 王姗;RNA结合蛋白QKI在脂肪细胞分化中的作用研究[D];第四军医大学;2015年
3 高鹏;生长激素与其信号分子STAT5B对脂肪细胞分化的影响[D];山东大学;2015年
4 段中潮;Tudor-SN蛋白调控脂肪分化的机制及其对代谢的影响[D];天津医科大学;2015年
5 何群;TAZ在脂肪细胞分化过程中的作用及调节[D];复旦大学;2010年
6 潘士锋;调控猪脂肪代谢的microRNAs的筛选和功能研究[D];南京农业大学;2014年
7 丁芳;鸭前脂肪细胞分化调控及FAS与SCD1基因的克隆与表达[D];四川农业大学;2015年
8 周一然;蛋白激酶C-βΙ和-δ在脂肪细胞分化中的作用[D];中国科学院研究生院(上海生命科学研究院);2006年
9 杜宝文;新基因筛选及其在脂肪细胞中的功能研究[D];西北农林科技大学;2013年
10 张日华;S100A16促进脂质形成及分子机制的研究[D];南京医科大学;2013年
相关硕士学位论文 前10条
1 唐飞;具有干预脂肪细胞分化活性天然产物Nigrasin Ⅰ的全合成及构效关系研究[D];复旦大学;2014年
2 彭地莎;FAM3A基因转录调控分析及其在脂肪生成中的作用研究[D];华中农业大学;2015年
3 邹磊;PCAF通过活化FOXO1促进前脂肪细胞分化[D];天津医科大学;2015年
4 张露;优质肉鸡脂肪沉积相关基因的筛选及其在前脂肪细胞分化过程中的表达研究[D];四川农业大学;2015年
5 徐慧;三种不同结构的叶瓜参鞘脂对脂肪细胞分化和脂质代谢的调控作用研究[D];中国海洋大学;2015年
6 王彤彤;Gpr54在脂质代谢中的生物学功能及其机理研究[D];华东师范大学;2015年
7 姬俊;桑属异戊烯基黄酮类化合物干预脂肪细胞分化作用的研究[D];复旦大学;2012年
8 谷雨;人CIDE-3基因在脂肪细胞分化及代谢中作用的研究[D];第四军医大学;2009年
9 张平平;应用mRNA差异显示技术筛选猪前脂肪细胞分化相关的基因[D];广东海洋大学;2011年
10 李丹丹;β3肾上腺素能受体激动剂BRL37344对前脂肪细胞分化的影响[D];山东大学;2012年
,本文编号:1490110
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1490110.html