工程台风风场模型的建立及其参数敏感性试验研究
本文选题:工程台风风场模型 切入点:参数 出处:《中国气象科学研究院》2017年硕士论文 论文类型:学位论文
【摘要】:近年来,基于随机数值模拟进行台风风灾评估的方法被广泛应用,其中,工程台风风场模型是重要的组成之一。我国对工程台风风场模型的研究正处于起步阶段,部分参数在西北太平洋海域还未有可靠的方案,且鲜有研究考虑我国沿海复杂地形的影响。因此,了解模型中各参数的特性,寻求适用于西北太平洋台风且考虑地形影响的工程台风风场模型是极其必要的。基于台风边界层的最新观测和研究成果,提出了最大风速半径、边界层风速比、拖曳系数等关键参数的经验方案,并依据垂直平均运动方程,建立了适用于西北太平洋台风的工程台风风场模型,最高分辨率为2 km。通过理想试验,验证了所建模型的合理性,并重点关注了模拟风场对拖曳系数参数化方案的敏感性。研究提出了地形阻力项的引入方案,并探讨了我国沿海地形对工程台风模拟风场的影响。主要结论有:建立的工程台风风场模型能较好地反映台风风场的非对称结构特征,并能较准确的计算出台风最大风速及其所在位置。根据已有观测及研究成果,总结得到增长型、饱和型、下降型三种拖曳系数随风速变化的参数化方案,通过敏感性试验发现,不同的拖曳系数参数化方案主要影响强台风的内核区,对10 m高度最大风速值的影响可达6~7%。选取“海葵(1211)”和“灿鸿(1509)”进行个例模拟试验,结果表明:建立的工程台风风场模型能较好地反映真实台风的最大风速、风场水平分布及影响测站的风速风向演变情况。此外,Holland B参数对模拟风场影响显著。在工程台风风场模型中引入地形阻力项后,“海葵”和“灿鸿”的最大风速模拟误差均减小,在台风移动方向后侧最大风速半径附近的风场变化最为显著,风速减小,风向顺时针旋转。可见,考虑地形作用后,能更加真实地反映台风风场特征,对进一步提高台风风灾评估准确度具有重要意义。
[Abstract]:In recent years, the method of typhoon wind disaster assessment based on stochastic numerical simulation has been widely used, among which the engineering typhoon wind field model is one of the important components. The study of engineering typhoon wind field model in China is in its infancy. There is no reliable scheme for some parameters in the Northwest Pacific Ocean, and few studies have taken into account the influence of the complex topography along the coast of China. Therefore, the characteristics of the parameters in the model are understood. It is extremely necessary to seek an engineering typhoon wind field model suitable for typhoon in the Northwest Pacific Ocean and consider the influence of topography. Based on the latest observation and research results of typhoon boundary layer, the maximum wind velocity radius and the wind velocity ratio of boundary layer are proposed. Based on the vertical mean motion equation, an engineering typhoon wind field model with a maximum resolution of 2 km is established based on the trailing coefficient and the vertical mean motion equation. The rationality of the proposed model is verified by ideal experiments. The sensitivity of the simulated wind field to the parameterization scheme of towing coefficient is emphasized, and the scheme of introducing the terrain resistance term is proposed. The influence of coastal topography on the simulated wind field of engineering typhoon is discussed. The main conclusions are as follows: the wind field model of engineering typhoon can better reflect the asymmetric structural characteristics of typhoon wind field. The maximum wind speed of typhoon and its location can be calculated more accurately. According to the existing observation and research results, three parameterized schemes for the variation of towing coefficient with wind speed are summarized, which are growth type, saturation type and descent type, and the sensitivity test shows that, Different parameterization schemes of towing coefficient mainly affect the inner core of a strong typhoon, and the influence on the maximum wind speed of 10 m height can reach 6? 7. The anemone 1211) and the "Zhanhong 1509)" are selected to carry out the simulation tests. The results show that the model of engineering typhoon wind field can well reflect the maximum wind speed of real typhoon. The horizontal distribution of wind field and the evolution of wind speed and direction affect the wind speed of the station. In addition, Holland B parameter has a significant effect on the simulated wind field. When the topographic resistance term is introduced into the wind field model of engineering typhoon, the maximum wind velocity simulation errors of "sea anemone" and "zhanhong" are both reduced. The wind field near the maximum wind velocity radius behind the moving direction of the typhoon is the most significant, the wind speed decreases and the wind direction rotates clockwise. It can be seen that considering the topography, the wind field characteristics of the typhoon can be more truly reflected. It is of great significance to improve the accuracy of typhoon disaster assessment.
【学位授予单位】:中国气象科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P444
【相似文献】
相关期刊论文 前10条
1 鹿翠华;;最大风速变化特征及再现期极值估算[J];气象科技;2010年03期
2 谢今范;刘玉英;张婷;;吉林省年最大风速的变化特征分析[J];吉林气象;2010年03期
3 姜海晶;张秀艳;毛玉秀;;1971-2010年虎林市最大风速变化特征[J];黑龙江气象;2012年02期
4 李霄;帅士章;潘徐燕;;复杂山区50a一遇最大风速估算[J];贵州气象;2012年04期
5 吴良会;从自记纸上挑最大风速的一个方法[J];气象;1983年03期
6 庄垂锋;;福州年最大风速的分析和估算[J];福建师范大学学报(自然科学版);1985年03期
7 郭化文 ,翟裕宗;三江平原年最大风速的推定[J];黑龙江八一农垦大学学报;1986年01期
8 林务荣,何华庆;估算灾区最大风速的一种方法[J];气象;1996年11期
9 陈福琴;一次最大风速记录的处理[J];陕西气象;2003年02期
10 庞文保;白光弼;滕跃;王骊华;;P-Ⅲ型和极值Ⅰ型分布曲线在最大风速计算中的应用[J];气象科技;2009年02期
相关会议论文 前10条
1 庞文保;白光弼;滕跃;王骊华;;P-Ⅲ型和极值Ⅰ型分布曲线在最大风速计算中的应用[A];第26届中国气象学会年会气象灾害与社会和谐分会场论文集[C];2009年
2 庞文保;刘宇;滕跃;;最大风速取值的分析计算[A];中国气象学会2006年年会“气候变化及其机理和模拟”分会场论文集[C];2006年
3 项瑛;刘聪;姜麟;肖卉;;江苏省最大风速分布分析[A];第四届长三角科技论坛论文集(上册)[C];2007年
4 庞文保;刘宇;;最大风速极值估算方法的应用[A];第十届中国科协年会论文集(二)[C];2008年
5 李文斌;史成;吴振强;张兴铃;邓明;刘祖健;;用两种极值推断法推算粤中气象站上百年一遇的日最大风速[A];创新驱动发展 提高气象灾害防御能力——S2灾害天气监测、分析与预报[C];2013年
6 杨秋珍;李军;徐明;黄海春;沈烈英;潘士华;韩玉洁;朱春玲;李s,
本文编号:1645607
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1645607.html