激子极化激元玻色爱因斯坦凝聚中的孤子研究

发布时间:2018-03-31 21:02

  本文选题:非共振泵浦 切入点:激子极化激元 出处:《吉林大学》2017年硕士论文


【摘要】:激子极化激元是半导体激子和微腔光子强耦合而形成的一种新的具有玻色子特性的准粒子。由于其小的有效质量和强的相互作用,理论上,可以在标准低温甚至室温下达到玻色爱因斯坦凝聚(BEC)。它不仅给基础研究带来新的研究课题,同时在未来量子器件的开发、应用方面具有广泛的前景,成为当前低温物理和凝聚态物理研究的热门话题之一。本文针对半导体微腔系统,研究了非共振均匀泵浦条件下激子极化激元玻色爱因斯坦凝聚中耗散孤子的存在条件及其物理性质。论文主要分为三个部分,具体内容如下:第一部分:简单介绍了激子极化激元的研究进展、玻色爱因斯坦凝聚中的物质波孤子以及激子极化激元凝聚中孤子的研究现状。第二部分:详细阐述了半导体微腔的结构及激子、激子极化激元的基本理论以及激子极化激元玻色爱因斯坦凝聚的形成过程及其性质。第三部分:首先分析了非共振均匀泵浦条件下激子极化激元玻色爱因斯坦凝聚及其稳定性条件,在此基础上,研究了凝聚体系统中出现耗散孤子的条件及特点。通过数值模拟,我们发现系统中稳态暗孤子的存在。在一定条件下,它能够自发的产生,并且持续很长时间。但由于耗散的存在,暗孤子还表现出了振荡、破裂、猝灭等特性。其次,我们研究了激子极化激元的损耗C?对暗孤子的影响。我们发现,在不改变其他参数的条件下,暗孤子可以在很大的C?范围内存在,并且,对于不同的损耗C?出现孤子的泵浦范围也不同;只有在一定的C?范围内才可以产生泵浦范围较大、稳定性较好、孤子寿命较长的暗孤子。最后,我们研究了泵浦边缘的影响,发现在低泵浦条件下,当参数满足RC D C D Rgg(28)??11时会产生一种新的态-反暗孤子,分析表明它是由泵浦边缘的非线性波发生干涉而形成的,并伴有些许振荡的局域峰。可以通过对泵浦调制,我们可以获得多个孤子。上述的研究结果,不仅有助于基础领域的研究,而且还为其在未来量子技术的应用提供了理论基础。
[Abstract]:The exciton polariton is a new quasi-particle with boson properties which is formed by the strong coupling of semiconductor exciton and microcavity photons.Due to its small effective mass and strong interaction, the Bose-Einstein condensation can be achieved theoretically at standard low temperature or even at room temperature.It not only brings new research topics to basic research, but also has a broad prospect in the development and application of quantum devices in the future. It has become one of the hot topics in the research of cryogenic physics and condensed matter physics.In this paper, the existence conditions and physical properties of dissipative solitons in the Bose-Einstein condensate of exciton polarized excitons under the condition of non-resonant uniform pumping are studied for semiconductor microcavity systems.The thesis is divided into three parts. The main contents are as follows: in the first part, the research progress of exciton polarization, the matter wave soliton in Bose-Einstein condensate and the soliton in exciton polarization condensation are briefly introduced.In the second part, the structure and exciton of semiconductor microcavity, the basic theory of exciton polarization and the formation process and properties of exciton polarimetric Bose-Einstein condensate are described in detail.In the third part, the conditions of Bose-Einstein condensation and its stability for exciton polarization excitons under non-resonant uniform pumping conditions are analyzed. On this basis, the conditions and characteristics of dissipative solitons in the condensate system are studied.By numerical simulation, we find the existence of steady-state dark solitons in the system.Under certain conditions, it can spontaneously produce and last for a long time.However, due to the existence of dissipation, dark solitons also exhibit the characteristics of oscillation, rupture and quenching.Secondly, we study the loss of exciton polarization excitons.The effect on dark solitons.We find that dark solitons can be found in large C3 without changing other parameters.Within range, and for different loss C?The pump range of solitons is also different; only at a certain C?Dark solitons with larger pumping range, better stability and longer lifetime can be produced within the range.Finally, we study the effect of pump edge. We find that a new state-inverse dark soliton can be produced when the parameters satisfy the RC-D D rgg28- 11:00 condition. The analysis shows that it is formed by the interference of nonlinear waves at the pump edge.A localized peak accompanied by a slight oscillation.We can obtain multiple solitons by pump modulation.The above results not only contribute to the study of the fundamental field, but also provide a theoretical basis for its application in the future quantum technology.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O469

【参考文献】

相关博士学位论文 前1条

1 孙聊新;ZnO回音壁微腔中激子极化激元色散、激射以及凝聚的实验研究[D];复旦大学;2009年

相关硕士学位论文 前1条

1 彭娉;玻色—爱因斯坦凝聚中物质波孤子及其相互作用的研究[D];西北师范大学;2007年



本文编号:1692428

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1692428.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户98b7b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com