当前位置:主页 > 硕博论文 > 工程硕士论文 >

填充叠氮化铜的定向碳纳米管复合含能材料的制备与性能研究

发布时间:2018-01-30 10:44

  本文关键词: 定向碳纳米管 叠氮化铜 静电感度 复合含能桥膜 电爆性能 出处:《南京理工大学》2017年硕士论文 论文类型:学位论文


【摘要】:叠氮化铜是一种感度很高的含能材料,由于具有极高的静电感度,从而限制其在实际中的应用。碳纳米管具有优异的导电性能,将叠氮化铜填充至碳纳米管中可以有效降低其静电感度,而且利用碳纳米管的管道效应可以提高叠氮化铜的输出威力。本文首先基于阳极氧化铝(AAO)模板制备定向碳纳米管,然后采用电化学沉积法在碳纳米管中空管腔中原位生长铜,再通过气-固叠氮化反应制备填充叠氮化铜的碳纳米管复合材料,并对其进行性能研究。主要研究内容与结果如下:(1)利用化学气相沉积(CVD)法在AAO模板中制备了定向碳纳米管阵列。结果表明,化学气相沉积法制备的碳纳米管具有两端开口、尺寸均一和高度定向的特点,碳纳米管管壁很薄仅为10nm左右,碳纳米管的外径约为250mm,XRD和拉曼测试结果表明利用AAO模板的自催化作用制备的碳纳米管结晶性较差。(2)采用电化学沉积法在碳纳米管中空管腔中原位生长铜,并研究电化学沉积条件(电流密度和沉积时间)对碳纳米管中填充的铜的形貌影响。结果表明,电流密度较小时,碳纳米管中填充的铜为针状枝晶结构,随着电流密度的增大,碳纳米管中铜的填充密度增大,当电流密度为0.9mA/cm2,碳纳米管中填充的铜为实心纳米线结构;随着沉积时间增长,碳纳米管中铜的填充密度增大。最终确定电化学沉积的最佳条件为:电流密度为0.6mA/cm2,沉积时间为1h,并对此条件下制备的样品进行叠氮化反应,得到了填充叠氮化铜的碳纳米管复合材料。(3)对制备的复合材料进行静电感度测试,结果表明,填充叠氮化铜的碳纳米管复合含能材料试样的50%静电发火能量(3.25mJ)明显高于叠氮化铜的50%静电发火能量(0.2mJ)。将填充叠氮化铜的碳纳米管复合材料制成电泳液,利用电泳沉积法制备碳纳米管复合含能桥膜和薄膜。电爆性能测试结果表明,碳纳米管复合含能桥膜电爆过程中的火焰高度更高,火焰面积更大,发火过程更为剧烈,发火持续时间更长。在相同的电爆条件下,碳纳米管复合含能桥膜和Cu桥膜呈现不同的电爆特性,碳纳米管复合含能桥膜的电爆延迟时间明显缩短,电爆峰值温度更高。复合含能薄膜激光点火实验结果表明,在激光束的作用区域,复合含能薄膜可以可靠点火。
[Abstract]:Copper azide is an energetic material with high sensitivity. Because of its high electrostatic sensitivity, copper azide is limited in practical applications. Carbon nanotubes have excellent conductivity. The electrostatic sensitivity of carbon nanotubes can be effectively reduced by filling copper azide into carbon nanotubes. Moreover, the output power of copper azide can be improved by using the tube effect of carbon nanotubes. Firstly, directional carbon nanotubes are prepared based on anodic alumina (AAO) template. Then copper was grown in situ in the hollow cavity of carbon nanotubes by electrochemical deposition. Then carbon nanotube composites filled with copper azide were prepared by gas-solid azide reaction. The main contents and results are as follows: 1) the directional carbon nanotube arrays were prepared by chemical vapor deposition (CVD) method in AAO templates. The carbon nanotubes prepared by chemical vapor deposition have the characteristics of open ends, uniform size and high orientation. The wall of carbon nanotubes is only about 10 nm thin, and the outer diameter of carbon nanotubes is about 250 mm. The results of XRD and Raman measurements showed that the crystallinity of carbon nanotubes prepared by the autocatalytic reaction of AAO template was poor. 2) Copper was grown in situ in the hollow cavity of carbon nanotubes by electrochemical deposition. The effect of electrochemical deposition conditions (current density and deposition time) on the morphology of copper filled in carbon nanotubes was studied. The results showed that the copper filled in carbon nanotubes was acicular dendritic structure when the current density was low. With the increase of current density, the filling density of copper in carbon nanotubes increases. When the current density is 0.9 Ma / cm ~ 2, the copper filled in carbon nanotubes is solid nanowire structure. With the increase of deposition time, the filling density of copper in carbon nanotubes increases, and the optimum conditions for electrochemical deposition are as follows: current density is 0.6 Ma / cm ~ 2, deposition time is 1 h. The carbon nanotube composites filled with copper azide were prepared by azide reaction under these conditions. The electrostatic sensitivity of the composites was tested. The 50% electrostatic ignition energy of carbon nanotube composite materials filled with copper azide was 3.25mJ), which was significantly higher than that of copper azide (50% MJ). The carbon nanotube composite filled with copper azide was prepared into electrophoretic solution. Carbon nanotubes composite energetic bridge films and films were prepared by electrophoretic deposition. The results showed that the flame height was higher and the flame area was larger. Under the same condition, carbon nanotube composite energetic bridge film and Cu bridge film show different characteristics of electrical explosion. The delay time of electric explosion of carbon nanotube composite energetic bridge film is shortened obviously, and the peak temperature of electric explosion is higher. The experimental results of laser ignition of composite energetic film show that the laser beam acts in the region. The composite energetic film can be reliably ignited.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ560.1

【参考文献】

相关期刊论文 前8条

1 李娜;许建兵;叶迎华;沈瑞琪;胡艳;;三维多孔微纳米结构叠氮化铜的原位合成及表征[J];火炸药学报;2015年04期

2 刘黎明;康晓丽;易勇;张红芳;罗江山;唐永建;;碳纳米管对Zr/KClO_4烟火剂的热行为和光辐射性能的影响[J];含能材料;2014年01期

3 霸书红;闫明辉;周龙;程秀莲;王桂萍;万新国;杜雪峰;;纳米CuO/CNTs的制备及对高氯酸钾基烟火药发光强度的影响[J];含能材料;2014年01期

4 钱新明;邓楠;魏思凡;李增义;;碳纳米管对烟火药剂的催化作用[J];含能材料;2009年05期

5 王罗新;吴忠波;庹新林;邹汉涛;许杰;易长海;徐卫林;;椅式(5,5)单壁碳纳米管内硝基甲烷热解反应的理论研究[J];含能材料;2009年05期

6 钱新明;魏思凡;邓楠;;CNTs/TMO复合催化剂对含高氯酸钾烟火药剂分解反应速率的影响[J];火炸药学报;2009年03期

7 崔平;李凤生;周建;姜炜;杨毅;;碳纳米管/高氯酸铵复合粒子的制备及热分解性能[J];火炸药学报;2006年04期

8 胡平安,王贤保,刘云圻,朱道本;碳纳米管的最新制备技术及生长机理[J];化学通报;2002年12期



本文编号:1476049

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1476049.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8d7d7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com