强化电芬顿法处理石化废水反渗透浓水的研究
本文选题:电芬顿 + 反渗透浓水 ; 参考:《中国科学院大学(中国科学院过程工程研究所)》2017年硕士论文
【摘要】:废水深度处理与回用是解决我国水资源短缺的一个有效手段,反渗透(RO)技术产水水质较好和运行成本较低等优点已成为废水回用的主流脱盐技术。但是反渗透技术会产生一定量浓水,其中含有大量无机盐和可溶性难降解有机物,这种较高盐度体系中难降解有机物的高效去除目前已成为反渗透技术所面临的主要瓶颈和难题。本文针对反渗透浓水含盐特性,将外加过氧化氢和曝气产过氧化氢结合,构建新型电芬顿体系,实现了石化废水反渗透浓水中难降解有机物的高效去除。主要研究内容和结果如下:1)外加过氧化氢的电芬顿技术可以有效降解石化废水中有机污染物,而曝气可有效强化电芬顿过程,显著提高有机物去除率。其强化机制可能是一方面通过阴极还原产生过氧化氢促进电芬顿,另一方面是曝气强化传质,促进了亚铁氧化,强化了电絮凝。在H2O2投加浓度150mg/L,pH=4.0,电流密度为10mA/cm2,空气曝气量为120 L/h的条件下,反应仅10 min,CODCr去除率即可达57.1%,继续反应至60 min,CODCr去除率最大可达66.7%。2)采用DSA电极作为阳极强化电芬顿体系也可以显著提高石化废水反渗透浓水的有机物去除效果,在pH=4,电流密度为30.0mA/cm2,H2O2投加量150mg/L的条件下,反应60min,CODCr去除率平均可达70.8%,DOC去除率平均可达63.3%。3)通过三维荧光光谱分析发现,电芬顿技术可以显著去除水中荧光类有机污染物,而曝气和DSA电极可以强化这一效果。通过对水样GC-MS分析发现,原水中含有大量长链烃系物和一定量的卤代烃、多环芳烃、酯类、苯系物和有机酸,曝气强化电芬顿工艺对卤代烃类物质、多环芳烃和苯系物有较好的去除效果,但对水中长链烃系物降解效果不佳。而DSA强化工艺可有效降解水中长链烃系物,同时对多种环境优先污染物有良好的去除效果。本文提出的外加双氧水-曝气强化电芬顿和DSA电极强化电芬顿法可高效处理石化废水反渗透浓水,具有广阔的应用前景,对于其他含盐体系中难降解有机物高效降解具有很好的借鉴意义。
[Abstract]:Advanced treatment and reuse of wastewater is an effective means to solve the shortage of water resources in our country. The advantages of reverse osmosis ROA (reverse osmosis) technology, such as better water quality and lower operation cost, have become the mainstream desalination technology for wastewater reuse. However, reverse osmosis technology will produce a certain amount of concentrated water, which contains a lot of inorganic salts and soluble refractory organic matter, The efficient removal of refractory organics in this high salinity system has become the main bottleneck and difficulty in reverse osmosis technology. In this paper, a new type of electric Fenton system was constructed based on the salt-containing characteristics of concentrated reverse osmosis water, which combined the addition of hydrogen peroxide with hydrogen peroxide to produce hydrogen peroxide in aeration, which realized the efficient removal of refractory organic matter in the concentrated water of reverse osmosis. The main contents and results are as follows: (1) addition of hydrogen peroxide can effectively degrade organic pollutants in petrochemical wastewater, while aeration can effectively enhance the electric Fenton process and significantly improve the removal rate of organic matter. On the one hand, the enhancement mechanism may be that hydrogen peroxide is produced by cathodic reduction to promote electric Fenton, on the other hand, aeration can enhance mass transfer, promote ferrous oxidation and strengthen electroflocculation. When the concentration of H2O2 is 150 mg / L, pH = 4.0, the current density is 10 Ma / cm ~ 2, and the air aeration is 120 L / h, The removal rate of COD _ (Cr) can reach 57.1 in 10 mins only, and the maximum removal rate of COD _ (Cr) in petrochemical wastewater can reach to 66.7.2Using DSA electrode as anode to strengthen the electric Fenton system, the removal efficiency of organic matter in concentrated water from reverse osmosis of petrochemical wastewater can also be significantly improved. Under the condition of pH 4 and current density of 30.0 Ma / cm ~ (2 +) H _ 2O _ 2 150mg/L, the average removal rate of COD _ (Cr) can reach 70.8 min, and the average removal rate of COD _ (3) can reach 63.33 路3. 3) by means of three-dimensional fluorescence spectrum analysis, it is found that the electric Fenton technique can significantly remove fluorescent organic pollutants in water. Aeration and DSA electrodes can enhance this effect. Through the GC-MS analysis of water samples, it was found that the raw water contains a large number of long chain hydrocarbon series and a certain amount of halogenated hydrocarbons, polycyclic aromatic hydrocarbons, esters, benzene series and organic acids, and aeration enhanced electric Fenton process for halogenated hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs) and benzene series have better removal efficiency, but the degradation efficiency of long chain hydrocarbon series in water is not good. The DSA enhanced process can effectively degrade the long chain hydrocarbon series in water and has a good removal effect on a variety of environmental priority pollutants at the same time. In this paper, the combined hydrogen peroxide and aeration enhanced electric Fenton process and DSA electrode enhanced electric Fenton method can efficiently treat the concentrated water from reverse osmosis of petrochemical wastewater, which has a broad application prospect. It is useful for other salt-containing systems to degrade organic matter efficiently.
【学位授予单位】:中国科学院大学(中国科学院过程工程研究所)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X74
【相似文献】
相关期刊论文 前10条
1 石维平;反渗透浓水综合利用的探讨与对策[J];有色冶金节能;2004年03期
2 戴昆仑;宋若春;;浅析反渗透浓水应用[J];工业水处理;2006年07期
3 张胜;毛永灏;徐璇;张郁;翟强;;反渗透浓水的回用[J];工业用水与废水;2007年03期
4 刘东;武春瑞;吕晓龙;;减压膜蒸馏法浓缩反渗透浓水试验研究[J];水处理技术;2009年05期
5 王平;龙潇;任汉涛;;电厂反渗透浓水回用的可行性分析[J];资源节约与环保;2009年05期
6 刘东;武春瑞;吕晓龙;;反渗透浓水除硬方法及其对减压膜蒸馏过程的影响[J];工业水处理;2010年05期
7 杜安平;张东乐;;反渗透浓水回用为循环水补水的应用[J];科技资讯;2010年25期
8 夏季祥;;炼化企业反渗透浓水处理技术现状及发展趋势分析[J];安全、健康和环境;2013年07期
9 雷斌;俞海桥;黄德昌;王俊川;;电触媒系统降解印染反渗透浓水的研究[J];中国环保产业;2014年01期
10 王庚平;索超;张明霞;张鹏;;反渗透浓水处理与利用技术研究概况[J];甘肃科技;2011年22期
相关会议论文 前5条
1 秦英杰;王焕;刘立强;崔东胜;吴松松;;经反渗透处理后炼油废水浓水的多效膜蒸馏技术[A];中国化工学会2011年年会暨第四届全国石油和化工行业节能节水减排技术论坛论文集[C];2011年
2 何艳明;栾景丽;刘维维;欧根能;陶辉旺;;有色冶金反渗透浓水的处理处置技术研究[A];2011中国环境科学学会学术年会论文集(第二卷)[C];2011年
3 刘晶;王平;秦英杰;王奔;刘立强;崔东胜;;钢铁厂废水经反渗透处理后浓水的多效膜蒸馏法深度浓缩[A];全国苦咸水淡化技术研讨会论文集[C];2013年
4 谢陈鑫;滕厚开;李肖琳;郑书忠;秦微;赵慧;张艳芳;李亮;;炼油废水反渗透浓水处理技术的研究[A];2013中国水处理技术研讨会暨第33届年会论文集[C];2013年
5 张静;关向宇;张东梅;张保成;;I5型低能耗管式膜在RO浓水零排放处理中的应用[A];第四届全国膜分离技术在冶金工业中应用研讨会论文集[C];2014年
相关硕士学位论文 前10条
1 白小霞;炼厂废水再生浓水臭氧活性炭催化氧化影响因素与效果的实验研究[D];兰州交通大学;2016年
2 吴月;强化电芬顿法处理石化废水反渗透浓水的研究[D];中国科学院大学(中国科学院过程工程研究所);2017年
3 孙亚楠;炼油废水的反渗透浓水的深度处理工艺研究[D];清华大学;2014年
4 郭瑞丽;反渗透浓水的预处理实验研究[D];太原理工大学;2013年
5 焦叙来;炼化污水回用膜浓水处理技术研究[D];中国石油大学(华东);2014年
6 白莹;污水深度处理中超滤膜应用及分离工艺优化[D];天津大学;2014年
7 张培龙;臭氧化处理炼油厂反渗透浓水及·OH生成影响因素的研究[D];山东农业大学;2013年
8 王超;TiO_2/Ti电极光电催化氧化处理反渗透浓水研究[D];河北工业大学;2014年
9 王洪;处理石化废水RO浓水中难降解有机物的初步探索[D];天津大学;2010年
10 陈国强;芬顿氧化—铁碳微电解法处理炼油厂RO浓水技术研究[D];青岛科技大学;2013年
,本文编号:1964057
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1964057.html