基于纳米粒子杂化网络的PVDF导热复合材料制备及多功能化调控
本文选题:导热复合材料 + 聚偏氟乙烯 ; 参考:《西南交通大学》2017年硕士论文
【摘要】:填充型导热高分子材料是将导热填料添加到高分子基体中制备的具有高导热系数的复合材料。填充型导热高分子制备方法简单、成本低廉并且在电子电气和微电子封装领域具有广阔的应用前景,近年来受到广泛的关注。常见的导热填料包括石墨、碳纳米管(Carbon nanotubes,CNTs)、石墨烯纳米片(Graphene nanoplatelets,GNPs)等导电填料和氮化硼(Boron nitride,BN)、氮化铝(Alumium nitride,AlN)、氧化铝(Alumium oxide,Al2O3)等绝缘陶瓷填料。将两种不同尺寸、不同维度的填料互配成杂化填料填充聚合物是制备导热高分子最有效、最简单的方法之一。但是,随着电子信息领域不断发展,具有单一导热性能的复合材料已经无法满足市场需求,因此开发具有多功能性的导热复合材料具有十分重要的意义。本论文针对填料杂化网络致密程度对聚偏氟乙烯(Polyvinylidene fluoride,PVDF)导热性能的影响开展研究工作。首先研究了导电杂化填料(CNTs/GNPs)对PVDF导热和导电性能影响。通过固定一种填料含量同时改变另一种填料含量,探究了不同杂化网络对复合材料导热导电性能的影响。此外,通过调控绝缘填料BN含量和尺寸,控制导电填料CNTs的分散和网络结构,研究了制备具有高导热系数和高介电常数复合材料的最佳工艺。主要研究成果如下:(1)通过溶液-熔融两步加工法将GNPs和CNTs引入到PVDF中,制备了三元纳米复合材料。通过对复合材料结晶行为分析发现,GNPs和CNTs对PVDF都有明显的成核作用,但是杂化网络对PVDF结晶度几乎没影响。通过流变行为和微观形貌表征以及导热性能测试发现,少量GNPs加入到PVDF/CNT-x中,由于GNPs对CNTs的体积排除作用,使得CNTs团聚更严重;进一步通过理论模拟计算发现由于CNTs团聚,CNTs间接触热阻略有增大。而流变结果显示,少量GNPs加入对复合材料网络致密程度几乎没有影响,此时复合材料导热系数提升较小;但是少量CNTs加入PVDF/GNP-x中,CNTs和GNPs能形成三维杂化网络,此时复合材料的模量显著提升,低频处有更大的平台,说明此时材料内部能形成更致密的杂化网络,因此复合材料导热系数显著增加,导热协同效率也更高。通过对电导率测试发现,CNTs在导电网络中起到主导作用,但是少量CNTs加入PVDF/GNP-x中,材料的电导率提升比少量GNPs加入到PVDF/CNT-x中更明显,有更高的协同效率。(2)通过向PVDF中引入导电填料CNTs和类石墨烯绝缘填料BN,成功制备具有高导热系数的三元纳米复合材料。结晶行为研究表明,BN和CNTs对PVDF结晶都有成核作用,并且同时加入BN和CNTs时,结晶度会随着BN含量增加而增大。通过微观形貌分析、介电性能和电导率测试发现少量的BN对CNTs有分散作用,复合材料的电导率明显提升,此时由于CNTs与PVDF之间有更多的界面极化,并且CNTs之间能形成更多微电容结构,因此复合材料介电常数显著提升;但是大量的BN对CNTs的网络会产生位阻效应,致使CNTs导电网络破坏,复合材料电导率和介电常数显著降低。流变行为分析发现,当BN含量大于10 wt%时,复合材料内部才能形成网络结构。但是将CNTs加入PVDF/BN-x中,即使BN含量为1 wt%,复合材料中也能形成致密的三维网络,网络致密程度提升是导热性能提高的主要原因。(3)通过调控BN尺寸,将三种不同尺寸的BN和CNTs组成杂化填料引入PVDF中,制备了三种三元纳米复合材料。通过形貌表征、流变行为和电导率测试分析填料网络变化,并对材料导热性能和介电性能进行测试后发现:对于PVDF/aBN-x/CNT,少量CNTs穿插在纳米级的aBN中,一方面aBN有分散CNTs的作用,因此PVDF/aBN-x/CNT的模量相比于PVDF/aBN-x提升最大,在低频处对频率的依赖性最小,网络最致密;另一方面aBN吸附于CNTs表面,使得CNTs之间难以直接搭接,电导率最低,介电性能也最差。此时,虽然样品有最致密网络,但是由于纳米级aBN间以及CNTs间较大的热阻,使得材料的导热系数最低。对于PVDF/bBN-x,bBN径厚比最大,在基体中最容易形成导热网络,样品导热系数也最大。对于PVDF/bBN-x/CNT,一方面由于bBN体积排除作用可以分散CNTs,另一方面CNTs也能增大熔体粘度,局部剪切应力变化促进bBN形成网络,使得复合材料中形成更多的导热通路,因此同等填料含量下该组样品有最大的导热系数。对于PVDF/cBN-x/CNT,cBN片层大,难以形成网络,对CNTs只有体积排除作用,使得CNTs网络更致密,因此样品的电导率最大,介电常数也最高,模量提升也比bBN更明显。但是,由于对导热贡献的BN片层难以形成网络,因此样品的导热系数相比于含bBN样品更低。
[Abstract]:Filled thermal conductive polymer material is a composite material with high thermal conductivity, which is prepared by adding thermal conductive filler to polymer matrix. The preparation method of filled type conductive polymer is simple, low cost and has broad application prospects in electronic and microelectronic packaging fields. Materials include graphite, carbon nanotube (Carbon nanotubes, CNTs), graphene nanoscale (Graphene nanoplatelets, GNPs) and other conductive filler and boron nitride (Boron nitride, BN), aluminum nitride (Alumium nitride, AlN), aluminum oxide, and other insulating ceramic filler. Two different dimensions, different dimensions of fillers are mixed into hybrid fillers. Polymer is one of the most effective and simple methods for the preparation of thermal conductive polymers. However, with the continuous development of the field of electronic information, the composite materials with single thermal conductivity are unable to meet the demand of the market. Therefore, it is of great significance to develop a multi-functional thermal conductive composite material. The influence of density on the thermal conductivity of polyvinylidene fluoride (Polyvinylidene fluoride, PVDF) was studied. First, the effect of conductive hybrid filler (CNTs/GNPs) on the thermal conductivity and conductivity of PVDF was studied. The thermal conductivity and conductivity of different hybrid networks were investigated by fixing the content of a kind of filler and changing the content of another kind of filler. In addition, by controlling the BN content and size of the insulating filler and controlling the dispersion and network structure of the conductive filler CNTs, the optimum technology for the preparation of composite materials with high thermal conductivity and high dielectric constant is studied. The main research results are as follows: (1) three yuan is prepared by introducing GNPs and CNTs into PVDF through the solution melting two step processing method. By analyzing the crystallization behavior of the composites, it was found that both GNPs and CNTs had obvious nucleation effect on PVDF, but the hybrid network had little effect on the crystallinity of PVDF. Through the rheological behavior, micromorphology and thermal conductivity testing, a small amount of GNPs was added to PVDF/CNT-x, and the GNPs has been excluded for the volume of CNTs due to GNPs. It is used to make the CNTs reunion more serious; further through theoretical simulation, it is found that the indirect thermal resistance of CNTs increases slightly because of CNTs agglomeration. And the rheological results show that a small amount of GNPs addition has little effect on the density of the composite network, and the thermal conductivity of the composite is less promoted at this time, but a small amount of CNTs is added to PVDF/GNP-x, CNTs and GNPs. A three-dimensional hybrid network can be formed. At this time, the modulus of the composite material increases significantly and the low frequency has a larger platform. It shows that the material can form a more compact hybrid network at this time. Therefore, the thermal conductivity of the composite increases significantly and the thermal conductivity is more efficient. The conductivity test shows that CNTs plays a leading role in the conductive network. However, a small amount of CNTs added to PVDF/GNP-x was more obvious than a small amount of GNPs added to PVDF/CNT-x, with higher synergistic efficiency. (2) a three element nanocomposite with high thermal conductivity was successfully prepared by introducing CNTs and graphene insulating filler BN into PVDF. Crystallization behavior studies showed that BN and CNTs pairs were found. The crystallinity of PVDF has nucleation, and when BN and CNTs are added, the crystallinity increases with the increase of the BN content. Through the analysis of the microstructure, the dielectric and electrical conductivity tests show that a small amount of BN has a dispersion effect on CNTs, and the conductivity of the composite improves obviously, and at this time, there are more interface polarization between CNTs and PVDF, and CNTs. More micro capacitance structure can be formed between them, so the dielectric constant of the composite increases significantly, but a large number of BN will have a hindrance effect on the CNTs network, resulting in the destruction of the CNTs conductive network, and the conductivity and dielectric constant of the composite significantly decrease. The rheological behavior analysis shows that the network can form a net when the content of BN is greater than 10 wt%. However, if CNTs is added to PVDF/BN-x, even if the content of BN is 1 wt%, a compact three-dimensional network can be formed in the composite. The increase in density of the network is the main reason for the improvement of thermal conductivity. (3) three kinds of three element nanocomposites are prepared by introducing three different sizes of BN and CNTs into PVDF by adjusting the size of BN. Material. Through the morphology characterization, rheological behavior and conductivity test and analysis of the change of the packing network, and after testing the thermal conductivity and dielectric properties of the material, it is found that for PVDF/aBN-x/CNT, a small amount of CNTs is inserted in the nano scale aBN, on the one hand, aBN has the effect of dispersing CNTs, so the modulus of PVDF/aBN-x/CNT is the largest than that of PVDF/aBN-x. In the low frequency, the dependence of frequency on the frequency is the smallest and the network is the densest; on the other hand, aBN is adsorbed on the surface of CNTs, which makes the CNTs difficult to connect directly, the conductivity is the lowest, and the dielectric property is the worst. At this time, the sample has the most dense network, but the thermal conductivity is the lowest because of the nanometer aBN and the larger thermal resistance between CNTs. For P VDF/bBN-x, bBN has the largest diameter thickness ratio, and the heat conduction network is the most easy to form in the matrix, and the thermal conductivity of the sample is also the largest. For PVDF/bBN-x/CNT, on the one hand, the bBN volume exclusion can disperse CNTs, on the other hand, CNTs can increase the viscosity of the melt. The local shear stress change promotes the bBN formation network, making the composites more guided. Heat path, therefore, with the same filler content, the sample has the maximum thermal conductivity. For PVDF/cBN-x/CNT, the cBN layer is large, it is difficult to form a network, the only volume exclusion of CNTs makes the CNTs network more compact, so the conductivity of the sample is maximum, the dielectric constant is the highest and the modulus is more obvious than that of bBN. However, because of the contribution to the heat conduction The BN layer is difficult to form a network, so the thermal conductivity of the sample is lower than that of the sample containing bBN.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB332
【相似文献】
相关期刊论文 前10条
1 马海红;史铁钧;宋秋生;;PMMA/SiO_2-TiO_2杂化纤维的制备与表征[J];高分子材料科学与工程;2009年11期
2 郁建灿;崔元靖;王民权;钱国栋;;无机-有机杂化二阶非线性光学材料研究进展[J];硅酸盐学报;2009年02期
3 宋秋生;史铁钧;马海红;;PVA/SiO_2/TiO_2杂化纤维的制备与表征[J];高分子材料科学与工程;2009年05期
4 马海红;江纪峰;张虎;陆昱;钱进;;PVA-PEG/SiO_2-TiO_2杂化纤维的制备与表征[J];化工新型材料;2009年11期
5 马海红;周浩;贺力;于维;刘发国;陶俊;;PEG/SiO_2-TiO_2杂化纤维的制备与表征[J];材料导报;2010年22期
6 王纯;高会元;程慧敏;;新型杂化炭分子筛膜研究进展[J];化工新型材料;2013年05期
7 刘登良;;从“杂化”说开去——材料创新的一种重要途径[J];中国涂料;2006年07期
8 何雪梅;;壳聚糖基杂化功能材料制备新进展[J];化工时刊;2009年12期
9 王宏伟;;新型杂化光聚合体系[J];信息记录材料;2011年03期
10 吴翠明;肖新乐;崔鹏;徐铜文;;杂化离子膜的制备和应用[J];化学进展;2010年10期
相关会议论文 前10条
1 隋玉龙;闫冰;;具有强键连接的铽绿光杂化分子材料[A];2005年中国固体科学与新材料学术研讨会专辑[C];2005年
2 李晶晶;邓联东;邢金峰;董岸杰;;二氧化钛阳离子杂化电泳纳米粒的制备与表征[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
3 孟庆国;宋梓瑜;张亮亮;孙道峰;;基于1,3,5-苯三甲酸的三维钡无机-有机杂化框架物的合成与表征[A];中国化学会第29届学术年会摘要集——第05分会:无机化学[C];2014年
4 吴波;余萍;崔灿;吴名;张洋;刘磊;王彩霞;卓仁禧;黄世文;;含叶酸还原敏感性脂质-聚合物杂化纳米粒子用于阿霉素靶向输送[A];2013年全国高分子学术论文报告会论文摘要集——主题H:医用高分子[C];2013年
5 邵志东;江晓;梁云霄;;一种新型无机-有机杂化磷酸盐的合成与表征[A];第15届全国晶体生长与材料学术会议论文集[C];2009年
6 Kimihiro Matsukawa;;光功能无机/有机杂化光学材料(英文)[A];第九届中国辐射固化年会论文集[C];2008年
7 赵宁;戴珍;刘海云;黎白钰;马军;王真;徐坚;;有机-无机杂化功能材料研究—聚倍半硅氧烷分子杂化与应用[A];2011中国材料研讨会论文摘要集[C];2011年
8 童朝健;王静;熊兆贤;薛昊;周建华;;有机生色团掺杂有机/无机复合基质非线性光学材料的制备与性能[A];第六届中国功能材料及其应用学术会议论文集(1)[C];2007年
9 柴志刚;李琦;徐东升;;多相均相杂化体系用于二氧化碳光催化还原[A];中国化学会第29届学术年会摘要集——第37分会:能源纳米科学与技术[C];2014年
10 万颖;冯翠苗;钱旭芳;李和兴;赵东元;;杂化介孔碳分子筛载体的合成[A];第五届全国环境催化与环境材料学术会议论文集[C];2007年
相关重要报纸文章 前1条
1 本报记者 金勇;朱美芳:悠游纤维世界[N];中国妇女报;2011年
相关博士学位论文 前10条
1 尧华;胺类固化剂结构与环氧聚硅氧烷杂化涂层性能关系的研究[D];上海大学;2015年
2 陈召来;水相加工的聚合物纳米晶杂化太阳能电池的性能优化及机理研究[D];吉林大学;2016年
3 宋玉敏;A_2B_2O_7(A=Cd,Sr;B=Nb,Ta)功能材料物性的第一性原理研究[D];昆明理工大学;2015年
4 陈文娟;银—半胱氨酸杂化纳米线合成及生物传感研究[D];福州大学;2014年
5 麻伍军;石墨烯杂化纤维及其柔性超级电容器研究[D];东华大学;2016年
6 刘俊生;新型荷电杂化(镶嵌)膜(材料)的制备与表征[D];中国科学技术大学;2006年
7 崔元靖;无机—有机杂化二阶非线性光学材料的设计、合成与性能研究[D];浙江大学;2005年
8 殷允杰;基于原位修饰杂化硅溶胶织物表面功能改性[D];江南大学;2013年
9 马海红;聚合物/SiO_2-TiO_2杂化纤维材料的研究[D];合肥工业大学;2009年
10 林松柏;有机树脂/二氧化硅杂化高吸水性材料的研究[D];天津大学;2004年
相关硕士学位论文 前10条
1 马前;动态凝胶的交叉快速愈合功能及其宏观杂化体的制备与机理研究[D];华南理工大学;2015年
2 沈鑫磊;硅/有机物杂化太阳能电池的制备及性能研究[D];浙江大学;2015年
3 许亚南;Cu/SPAES/PES杂化抗菌超滤膜制备和性能表征[D];南京理工大学;2015年
4 许巧静;硅基杂化光伏电池的界面调控及电极层修饰研究[D];苏州大学;2015年
5 胡四维;基于吡咯并吡咯烷酮结构的窄带隙小分子液晶调控P3HT/ZnO杂化本体异质结微观形貌及其性能优化[D];南昌大学;2015年
6 夏周慧;纳米结构金表面等离子体效应在硅基杂化太阳能电池中的应用[D];苏州大学;2015年
7 史彦龙;基于POSS无机/有机杂化光电材料的合成及性质研究[D];兰州交通大学;2015年
8 张丹丹;巯基—烯/自由基混杂光固化大豆油基纳米复合涂层制备与性能研究[D];南昌航空大学;2015年
9 赵伟刚;结合位点确定的高分子杂化体的制备及其功能研究[D];兰州交通大学;2015年
10 宋晓凯;基于仿生硅化/钙化设计制备杂化凝胶微球及固定化酶研究[D];天津大学;2014年
,本文编号:2015105
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2015105.html