Nanofloc强化SBR工艺处理市政污水
发布时间:2018-06-23 06:48
本文选题:新型纳米絮凝剂 + SBR ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:我国城市生活污水处理厂的出水水质提升到一级A标准后,国内很多污水处理工艺出水达不到该标准,污水处理工艺的改革和创新迫在眉睫。本课题利用新型纳米絮凝剂(Nanofloc)对SBR工艺进行改进研究,探究Nanofloc药剂的理化性质和自身性能,利用改进后的Nanofloc-SBR工艺提升SBR反应器的处理效率。通过对Nanofloc药剂本身进行研究分析,了解了 Nanofloc的理化性质,初步确定了 Nanofloc-SBR工艺参数。分析Nanofloc-SBR工艺,投加Nanofloc的反应器运行过程中污泥性能更加稳定;对TN、氨氮的去除效果平均提升了 30%;对TP的去除效果平均提升了 45%。培养到20天以后,出水中的TP含量达到1mg/L以下;出水中COD、氨氮、TN的含量均达到一级A排放标准。Nanofloc对活性污泥的性状存在较大的影响,Nanofloc的絮凝作用使活性污泥增长速率加快;有机物质含量有所下降,投加Nanofloc污泥的MLVSS含量比未投加的少10%左右。Nanofloc的作用对颗粒污泥的形成有所阻碍。出水中Fe含量最高为210ug/L,低于集中式生活饮用地表水源地补充项目标准值的0.3mg/L,污泥中Fe含量最高为4660mg/kg。Nanofloc-SBR工艺处理市政污水时,投加Nanofloc反应器对COD、TN、TP的去除效果比未投加Nanofloc反应器分别提升10%、30%、50%左右。Nanofloc药剂在化学辅助除磷、出水色度和浊度方面的作用比较明显。投加Nanofloc药剂能在较短的沉降时间内保证活性污泥的沉降效果。未投加Nanofloc反应器不能维持足够量的活性污泥,对市政污水的处理效果较差。投加Nanofloc对活性污泥的性状也会产生一定的影响,通过SEM照片可以观察到两组反应器内活性污泥中微生物种群的差异。利用中试大型设备进行投加Nanofloc药剂运行SBR工艺,Nanofloc-SBR工艺的污泥快速沉降特点得到体现,活性污泥的沉降时间为15min。Nanofloc-SBR中试反应器对市政污水中COD、氨氮、TN、TP的去除率分别为90%、95%、65%、80%左右。随着反应器运行时间的延长,反应器的除磷效果日益增强。在Nanofloc的作用下,中试反应器出水的色度和浊度比较低,出水中很少能够观察到细小的活性污泥絮体。
[Abstract]:After the effluent quality of domestic sewage treatment plant is raised to A standard, many domestic wastewater treatment processes can not reach this standard, so the reform and innovation of wastewater treatment process is urgent. In this paper, a new nanometer flocculant (Nanofloc) was used to improve SBR process, to explore the physicochemical properties and properties of Nanofloc, and to improve the treatment efficiency of SBR reactor by the improved Nanofloc-SBR process. The physicochemical properties of Nanofloc were studied and the technological parameters of Nanofloc-SBR were preliminarily determined by studying and analyzing Nanofloc medicament itself. By analyzing Nanofloc-SBR process, the sludge performance of the reactor added Nanofloc was more stable; the removal efficiency of TNN and TP were increased by 300.The removal efficiency of TP was increased by 45g on average. After 20 days of culture, the TP content in effluent was below 1 mg / L, the contents of CODand NH3-N TN in effluent were all up to the first class A discharge standard. Nanofloc had a great influence on the characteristics of activated sludge. The flocculation of Nanofloc accelerated the growth rate of activated sludge. The content of organic matter decreased, and the MLVSS content of Nanofloc sludge was about 10% less than that of unadded sludge. Nanofloc inhibited the formation of granular sludge. The highest Fe content in effluent is 210ugr / L, which is lower than 0.3 mg / L of the standard value of the supplementary project in the centralized drinking and living surface water source area, and the highest Fe content in sludge is 4660 mg / kg 路Nanofloc-SBR process for municipal wastewater treatment. Nanofloc reactor increased the removal efficiency of COD ~ (2 +) TNN _ (TP) by 10% ~ 30%, respectively. Nanofloc reagent played an important role in chemical assisted phosphorus removal, color and turbidity of effluent. The sedimentation effect of activated sludge can be ensured by adding Nanofloc agent in a short settling time. Without Nanofloc reactor, enough activated sludge could not be maintained, and the treatment effect of municipal sewage was poor. The effects of Nanofloc on the characteristics of activated sludge were also observed, and the difference of microbial population in activated sludge between the two groups could be observed by SEM. The characteristics of rapid sludge settlement in SBR process with Nanofloc-SBR process were demonstrated by using a pilot plant with Nanofloc agent. The settling time of activated sludge was 15 min. Nanofloc-SBR pilot-scale reactor could remove COD from municipal sewage, and the removal rate of NH3-TNTP was about 6580%, respectively. With the prolongation of the operation time of the reactor, the phosphorus removal effect of the reactor is increasing day by day. Under the action of Nanofloc, the chroma and turbidity of the effluent from the pilot reactor were relatively low, and the fine activated sludge floc was rarely observed in the effluent.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 杨博;孙宾宾;;水处理絮凝剂的研究现状[J];合成材料老化与应用;2016年05期
2 李剑锋;刘信源;孙慧芳;程芳琴;;聚硅酸盐类絮凝剂改性及在水处理中的应用研究进展[J];水处理技术;2016年07期
3 张峰;彭辉;杨思敏;尹华;;微生物絮凝剂与Fenton试剂联合调理对印染污泥脱水性能的影响[J];环境工程学报;2016年06期
4 陈建;;无机高分子絮凝剂的研究进展简述[J];廊坊师范学院学报(自然科学版);2016年01期
5 关伟;郭会平;赵学洋;李举明;;我国城市污水处理现状及城市污水处理厂提标改造路径分析[J];辽宁大学学报(自然科学版);2015年04期
6 常青;;絮凝学研究的新领域——具有重金属捕集功能的高分子絮凝剂[J];环境科学学报;2015年01期
7 易诚;湛含辉;程胜高;;混凝好氧颗粒污泥的絮凝剂选择[J];环境工程学报;2014年10期
8 阮晓卿;蒋岚岚;陈豪;刘晋;陈秋萍;;江苏不同地区典型农村生活污水处理适用技术[J];中国给水排水;2012年18期
9 宋国君;韩冬梅;;中国城市生活污水管理绩效评估研究[J];中国软科学;2012年08期
10 叶海明;;污水处理厂提标改造关键影响因素及工艺选择[J];化学工程师;2012年03期
,本文编号:2056249
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2056249.html