压力容器焊接质量控制中的数据挖掘方法及其应用研究
[Abstract]:At present, welding is becoming more and more important in the manufacturing process of pressure vessels. In order to ensure the quality of pressure vessels, the control and management of welding quality is particularly critical. With the rapid development of computer technology and database technology, the modern manufacturing industry has produced massive data in the process of production. Obviously, the traditional statistical method is in a dilemma and can not meet the needs of the development of the times. Aiming at the problem that mass data can not extract knowledge in modern manufacturing industry, this paper applies data mining technology to welding quality control in manufacturing industry, combining with the actual project of a company. On the basis of previous studies, this paper focuses on the work of welding quality control of pressure vessels. The research contents are summarized as follows: first, aiming at the phenomenon of nonconformity of welding quality of pressure vessels, the quality management 5M1E (operator, machine equipment), Raw materials, process methods, environment and measurement, etc., the whole process, multi-direction, multi-angle to analyze the factors that affect the welding quality of pressure vessels, and reduce the abnormal range of welding quality. Secondly, this paper proposes a classification method based on feature selection and decision tree C5.0. Firstly, the feature selection algorithm is used to reduce the dimension of a large number of features. The decision tree C5.0 algorithm is used to construct the welding classification model, so as to find out the influencing factors that affect the welding quality. Regard these important factors as "quality control points" and strictly control them. Finally, the decision tree algorithm is compared with the neural network algorithm and the Logistic regression algorithm. The experimental results show that the accuracy of the decision tree algorithm is better than that of the neural network algorithm and the Logistic regression algorithm. The result of decision tree analysis is applied to the actual welding work of the company, and the welding problem is obviously improved. Its concept and guiding ideology have a definite value of popularization and application in the pressure vessel manufacturing industry.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG457.5
【参考文献】
相关期刊论文 前10条
1 李德仁;马军;邵振峰;;论时空大数据及其应用[J];卫星应用;2015年09期
2 晁永生;孙文磊;;基于粗糙集的焊接类型关联规则提取[J];计算机工程与应用;2015年15期
3 李平荣;;大数据时代的数据挖掘技术与应用[J];重庆三峡学院学报;2014年03期
4 杨海燕;;浅谈提高压力容器焊接质量的举措[J];河北农机;2014年05期
5 王小军;白杰;;产品质量影响因素与质量监管模式创新[J];企业改革与管理;2014年07期
6 郑丽琴;;基于数据挖掘的决策树算法和C5.0原理简介[J];知识经济;2014年07期
7 李孝伟;陈福才;李邵梅;;基于分类规则的C4.5决策树改进算法[J];计算机工程与设计;2013年12期
8 宋建聪;戴青云;付品欣;钟润阳;;数据挖掘在生产过程质量管理中的应用[J];现代制造工程;2013年09期
9 杨丽勇;;数据挖掘在商业决策系统中的应用[J];现代商业;2013年18期
10 帅青红;方玲;匡远竞;;基于决策树与logistic的上市公司信用评估比较研究[J];西南民族大学学报(人文社会科学版);2013年05期
相关博士学位论文 前1条
1 伊卫国;基于关联规则与决策树的预测方法研究及其应用[D];大连海事大学;2012年
相关硕士学位论文 前9条
1 李迎春;数据挖掘中决策树分类算法的研究[D];湖南师范大学;2015年
2 黄俊辉;基于数据挖掘的CSG铸坯质量控制应用研究[D];华南理工大学;2013年
3 廖庆富;数据挖掘在提高SMT焊接质量中的应用研究[D];广东工业大学;2013年
4 黄慧中;基于Logistic和神经网络的个人信用评估组合模型研究[D];电子科技大学;2012年
5 董小格;基于数据挖掘的焊件质量诊断技术研究[D];东北石油大学;2012年
6 卢辉;电力工程焊接质量管理与应用研究[D];华北电力大学(北京);2011年
7 郭威;数据挖掘技术在银行CRM中的应用研究[D];北京工商大学;2010年
8 孟玉明;数据挖掘在电信客户流失预测中的应用研究[D];中南大学;2007年
9 杨莲;数据挖掘的统计模型和算法的研究[D];重庆大学;2005年
,本文编号:2160725
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2160725.html