一种新型D-柠檬烯纳米系统的制备以及其抗菌活性的测定
发布时间:2017-10-25 14:39
本文关键词:一种新型D-柠檬烯纳米系统的制备以及其抗菌活性的测定
更多相关文章: 有机凝胶 以有机凝胶为基本成分的纳米乳 D-柠檬烯 ε-多熔素 抗菌活性 纳米乳
【摘要】:D-柠檬烯,4-异丙烯基-1-甲基环丙烯,属于天然单萜类物质,该物质大量存在于柑橘类精油中,并在其中被发现。D-柠檬烯对于大部分的革兰氏阴性菌和革兰氏阳性菌都表现出了强大的抑制活性,该物质的安全性被美国联邦法规(Code of Federal Regulations)所认可。在自然界中,D-柠檬酸是一种有着令人愉快的柑橘气味的透明液体。该物质优良的特性使得其在食品,化妆品和制药行业被广泛用作天然的抗菌剂。然而,D-柠檬烯是一种疏水性化合物(油性),这很大程度上限制其在富水表面的溶解性和作用,从而导致食源性致病菌的生长。除此之外,D-柠檬烯在自然条件下的氧化也导致其在储存方面有一定的限制。在自然条件先,D-柠檬烯会被氧化称为醇类和环氧类物质,从而导致其的损失。为了克服这些缺点,将D-柠檬烯封装到一个最佳的纳米分散输送系统会是一个很好的选择,这样也有利于增加其在水中的溶解性,稳定性和抗菌效率。在外,将其与其他一些强大的抗菌药物结合会非常有利于调高其在食品中的抗菌能力。当前研究的目的是希望能够将D-柠檬烯封装到一种新型的纳米系统内以克服上面提到的局限性。本课题制备了一系列D-柠檬烯纳米乳并对其进行电子显微镜、红外光谱、X射线衍射、临界凝胶浓度、感官试验测定。通过优化表面活性剂、有机凝胶因子的种类和用量以及高压均质法的参数,在5%硬脂酸、10%吐温80、30MPa、10循环的条件下,得到的纳米乳最小液滴平均直径约为112 nm,并且在4-28℃条件下稳定存储两周。之后用肉汤稀释实验对其进行了四种食源性致病菌(大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌、酿酒酵母)的抑制效果,并用扫描电子显微镜和细胞释放成分分析其作用机理。通过D-柠檬烯单体与其不同大小纳米乳进行对照实验研究不同的传送系统对抑菌活性的影响。扫描电子显微镜和细胞释放成分表明纳米乳颗粒可以破坏细胞膜的完整性,最小抑菌浓度表明D-柠檬烯的纳米乳有助于增加其抑菌效果。最终确定以5%单硬脂酸甘油酯、10%吐温80、100MPa、10循环制备的纳米乳的最小液滴平均直径约为36nm并有良好的稳定性。通过智能组合和纳米技术,将ε-多聚赖氨酸融于D-柠檬酸纳米乳中,以棋盘法检测D-柠檬酸和ε-多聚赖氨酸的共同使用对其抑菌活性的影响,并与D-柠檬酸对比。并采用高压高压均质作用,研究不同含量的ε-多聚赖氨酸对纳米乳直径的影响。通过扫描电子显微镜和细胞释放成分分析研究D-柠檬酸和ε-多聚赖氨酸共同使用的抑菌机理。结果表明,D-柠檬酸和ε-多聚赖氨酸的共同作用可以加速细胞凋亡,可有效降低最小抑菌浓度。
【关键词】:有机凝胶 以有机凝胶为基本成分的纳米乳 D-柠檬烯 ε-多熔素 抗菌活性 纳米乳
【学位授予单位】:北京化工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TB383.1
【目录】:
- ABSTRACT7-12
- 摘要12-15
- ABBREVIATIONS15-29
- CHALPTER 1:LITERATURE REVIEW29-73
- 1.1 INTRODUCTION29-33
- 1.2 DEFINITION OF D-LIMONENE33-40
- 1.2.1 Physicochemical Proprieties33-34
- 1.2.2 Biosynthesis of D-Limonene34-35
- 1.2.3 Biological Activities of D-Limonene35-38
- 1.2.3.1 Anticancer Activity35-36
- 1.2.3.2 Antidiabetic Activity36
- 1.2.3.3 Antioxidant Activity36-37
- 1.2.3.4 Antimicrobial Activity37-38
- 1.2.4 Mechanism of Antimicrobial Action38-39
- 1.2.5 Applications of D-Limonene39-40
- 1.3 INTRODUCTION OF GELS40-46
- 1.3.1 Definition of Organogels40-41
- 1.3.2 Organogelators41-43
- 1.3.2.1 Classification of the Organogelators41-42
- 1.3.2.2 Characterization of Organogels42-43
- 1.3.3 Proprieties of Organogels43-45
- 1.3.3.1 Biocompatibility43-44
- 1.3.3.2 Chirality44
- 1.3.3.3 Non-Birefringence44
- 1.3.3.4 Optical Clarity44
- 1.3.3.5 Thermo-Stability44
- 1.3.3.6 Thermo-Reversibility44-45
- 1.3.3.7 Viscoelasticity45
- 1.3.4 Applications of Organogels in Food Industry45-46
- 1.4 INTRODUCTION AND DEFINITION OF NANOEMULSIONS46-58
- 1.4.1 Formation of Nanoemulsions47-51
- 1.4.1.1 Low Energy Methods47-49
- 1.4.1.1.1 Spontaneous Emulsification47-48
- 1.4.1.1.2 Catastrophic Phase Inversion48-49
- 1.4.1.2 High-Energy Methods49-51
- 1.4.1.2.1 Homogenization by Sonication49
- 1.4.1.2.2 Microfluidizer49-50
- 1.4.1.2.3 High Pressure Homogenization50-51
- 1.4.2 Characterization of Nanoemulsions51-53
- 1.4.2.1 Dynamic Light Scattering52
- 1.4.2.2 Scanning Electron Microscopy52
- 1.4.2.3 Transmission Electron Microscopy52
- 1.4.2.4 Zeta Potential52-53
- 1.4.3 Stability of Nanoemulsions53-55
- 1.4.3.1 Ostwald Ripening53-54
- 1.4.3.2 Coalescence and Flocculation54
- 1.4.3.3 Creaming54-55
- 1.4.4 Application of Nanoemulsions in Food Industry55-58
- 1.4.4.1 Antimicrobial Systems55-57
- 1.4.4.2 Transdermal Delivery Systems57
- 1.4.4.3 Bioavailability57-58
- 1.5 COMBINATION OF ESSENTIAL OILS AND THEIR BIOACTIVE COMPOUNDS58-61
- 1.5.1 Combination Test Method59-61
- 1.6 THE SCOPE OF THETHESIS61
- REFERENCES61-73
- CHAPTER 2:PREPARATION AND CHARACTERIZATION OF D-LIMONENE ORGANOGEL73-85
- 2.1 BACKGROUND73-74
- 2.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS74-75
- 2.2.1 Experimental Materials74
- 2.2.2 Experimental Equipments74-75
- 2.3 PREPARATION METHODS75-76
- 2.3.1 Determination of the Critical Gelation Concentration(CGC)75
- 2.3.2 Preparation of D-Limonene Organogel75
- 2.3.3 Characterization of D-Limonene Organogel75-76
- 2.3.3.1 The Microscopic Analysis75-76
- 2.3.3.2 FTIR-Analysis76
- 2.3.3.3 XRD Measuements76
- 2.4 RESULTS AND DISCUSSIONS76-82
- 2.4.1 Determination of the Critical Gelation Concentration76-77
- 2.4.2 D-Limonene Organogel Preparation77-78
- 2.4.3 D-Limonene Organogel Characterization78-82
- 2.4.3.1 Organoleptic Test78
- 2.4.3.2 Microscopic Analysis78-79
- 2.4.3.3 XRD Measurement79-81
- 2.4.3.4 FTIR Measurements81-82
- CONCLUSION82
- REFERENCES82-85
- CHAPTER 3:PRODUCTION AND STABILITY STUDIES OF D-LIMONENEORGANOGEL-BASED NANOEMULSION FORMED BY HIGH PRESSUREHOMOGENIZATION METHOD85-107
- 3.1 BACKGROUND85-86
- 3.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS86-87
- 3.2.1 Experimental Materials86-87
- 3.2.2 Experimental Equipment87
- 3.3 PREPARATION METHODS87-88
- 3.3.1 Preparation of D-Limonene Organogel-Based Nanoemulsion87-88
- 3.3.2 Particle Size Measurement88
- 3.3.3 Turbidity Measurements88
- 3.3.4 Storage Stability88
- 3.4 RESULTS AND DISCUSSIONS88-103
- 3.4.1 Effects of Organogelators on the Formation of D-Limonene Organogel-BasedNanoemulsion88-91
- 3.4.2 Effects of Surfactants Type and Concentration on the Formation of D-LimoneneOrganogel-Based Nanoemulsion91-96
- 3.4.2.1 Effects of the Type of Surfactant on the Formation of the Oil Droplets91-94
- 3.4.2.2 Impact of the Surfactant Amount on the Particle Size Diameters Formation94-96
- 3.4.3 Impacts of the Homogenization Pressure and Cycling Number on the D-Limonene Organogel-Based Nanoemulsion96-99
- 3.4.4 Storage Stability of D-Limonene Organogel-Based Nanoemulsion99-103
- CONCLUSION103
- REFERENCES103-107
- CHAPTER 4:IMPROVING THE ANTIMICROBIAL ACTIVITY OF D-LIMONENE BY ITS INCORPORATION INTO AN ORGANOGEL-BASEDNANOEMULSION107-123
- 4.1 BACKGROUND107-109
- 4.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS109
- 4.2.1 Experimental Materials109
- 4.2.2 Experimental Equipments109
- 4.3 PREPARATION OF D-LIMONENE ORGANOGEL AND D-LIMONENE ORGANOGEL-BASED NANOEMULSION109-110
- 4.4 PARTICLE SIZES MEASUREMENTS110
- 4.5 TURBIDITY MEASUREMENTS110
- 4.6 ANTIMICROBIAL ACTIVITY110-111
- 4.6.1 Microbial Strains and Growth Cultures110-111
- 4.6.2 Determination of MICs Values111
- 4.7 MECHANISM OF THE ANTIMICROBIAL ACTION111-112
- 4.7.1 Scanning Electrons Micrographs111-112
- 4.7.2 Cells Constituents Release Determination112
- 4.8 RESULTS AND DISCUSSIONS112-120
- 4.8.1 Preparation and Characterization of D-Limonene Organogel-BasedNanoemulsion112-115
- 4.8.2 The Effect of the Organogel-Based Nanoemulsion on the AntimicrobialEfficiency of D-Limonene115-117
- 4.8.3 Mechanism of the Antimicrobial Action117-120
- 4.8.3.1 Scanning Electrons Analysis117-119
- 4.8.3.2 Determination of the Cells Constituent Release119-120
- CONCLUSION120-121
- REFERENCES121-123
- CHAPTER 5:IN VITRO ANTIMICROBIAL EFFICIENCY OF ε-POLYLYSINE AND D-LIMONENE AND THEIR COMBINATION AGAINSTFOUR FOOD-BORNE PATHOGENS123-131
- 5.1 BACKGROUND123
- 5.2 XPERIMENTAL AND EQUIPMENTS123-124
- 5.2.1 Experimental Materials124
- 5.2.2 Experimental Eq山pments124
- 5.3 ANTIMICROBIAL ACTIVITY124-126
- 5.3.1 MIC Measurement of D-Limonene and ε-Polylysine124-125
- 5.3.2 Synergism Testing of ε-Polylysine and D-Limonene125-126
- 5.4 RESULTS AND DISCUSSIONS126-128
- 5.4.1 Antimicrobial Efficacy of ε-Polylysine and D-Limonene126-127
- 5.4.2 Synergism Testing of ε-Polylysine and D-Limonene127-128
- CONCLUSION128
- REFERENCES128-131
- CHAPTER 6:PREPARATION OF D-LIMONENE NANOEMULSION WITHTHE INCLUSION OF ε-POLYLYSINE AND INVESTIGATION OF ITSANTIMICROBIAL ACTIVITY AND MECHANISM OF ACTION131-149
- 6.1 BACKGROUND131-133
- 6.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS133
- 6.2.1 Experimental Materials133
- 6.2.2 Experimental Apparatus and Equipments133
- 6.3 PREPARATION METHOD133-136
- 6.3.1 Preparation of D-Limonene NanoemuIsion133-134
- 6.3.2 Preparation of D-Limonene Nanoemulsion with the Inclusion Of ε-Polylysine134
- 6.3.3 Particle Size Measurement134-135
- 6.3.4 The Meament of Turbidity135
- 6.3.5 Antimicrobial Efficiency135-136
- 6.3.5.1 Determination of the MICs135
- 6.3.5.2 Scanning Electron Microscopy135-136
- 6.3.5.3 Cells Constituent Release Determination136
- 6.4 RESULTS AND DISCUSSIONS136-145
- 6.4.1 D-limonene Nanoemulsion Preparation136-137
- 6.4.2 The Impact of ε-Polylysine on the D-Limonene Nanoemulsion137-139
- 6.4.3 Antimicrobial Efficiency of D-Limonene Nanoemulsion with the Inclusion of ε-Polylysine and their Comparative Study139-141
- 6.4.4 Mechanism of D-Limonene Nanoemulsion with the Inclusion of ε-Polylysine141-145
- 6.4.4.1 SEM Visualization141-144
- 6.4.4.2 Cell Constituent Release Determination144-145
- CONCLUSION145
- REFERENCES145-149
- CHAPTER 7:CONCLUSION149-151
- LIST OF PUBLICATIONS151
- Publications in Process151-153
- ACKNOWLEDGMENT153-155
- Mohamed Reda Zahi (Author)155-157
- Doctor Professor Pingyu Wan (First Supervisor)157-159
- Doctor Professor Qipeng Yuan (Second Supervisor)159-160
- 博士研究生学位论文笞辩委员会决议书160-161
本文编号:1094182
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1094182.html