数字微镜器件在红外目标场景仿真器中的应用研究
[Abstract]:As the core component of the hardware in the loop simulation experiment system, the infrared target scene simulator mainly provides the dynamic infrared target and background environment for the hardware in the loop simulation system, and meets the requirement of the scene conditions required by the simulation experiment. At present, several typical infrared target simulation techniques include the liquid crystal light valve, the infrared CRT, the laser diode and the resistance. Compared with other infrared target simulation techniques, compared with other infrared target simulation techniques, the DMD infrared target scene emulator gets more in-depth application research with its good performance and lower cost advantage. This paper investigates the development status of the DMD infrared target scene simulator and applies the DMD infrared target scene emulator in practical application. The.DMD chip is a reflection type spatial light modulator invented by the American TI (TI) Company in 1987, and is widely used in many fields such as DLP projection display, high definition cinema, spectral imaging and photolithography. At present, the DMD chip produced by TI company is 320~2500nm, its light The cut-off wavelength of the spectral transmittance of the learning window is 2700nm., so when DMD is applied to the 3~5 m and 8~12 m bands, the optical window of the surface needs to be replaced to ensure that DMD can work normally in the medium wave and the long wave infrared band. In this paper, Zn Se infrared material is used as the optical window of DMD, and the plating of Zn Se window glass is first plated and plated. The spectral transmittance of the Zn Se optical window at the 3~5 mu m band is higher than 95%, and the spectral transmittance is higher than 80% at 8~12 / M band. Then, according to the harsh environment and fine operation required in the DMD microlens replacement process, the optical window of the DMD chip is replaced by the laboratory microprocessing technology. The DMD chip after changing the window can be used normally in the 3~5 and 8~12 M band.DMD devices to be applied to the infrared band. The diffraction effect of the DMD microlenses will cause the decline of the contrast of the system imaging, and the diffraction effect becomes more and more significant with the increase of the incident wavelength. When it is applied to the 8~12 in the M band, the diffraction effect causes the serious contrast of the system. The imaging performance of the DMD infrared target scene simulator can not meet the simulation requirements. In order to reduce the diffraction effect of the DMD microlenses and improve the contrast of the system imaging, this paper establishes the DMD micro lens two-dimensional diffraction grating diffraction model based on the working principle and structure characteristics of the microlenses, and uses the scalar diffraction theory and the vector diffraction theory to simulate the diffraction model. The diffraction characteristics of the DMD microlens in the infrared band are analyzed. First, it is obtained by the scalar diffraction model that the contrast degree of the DMD infrared target scene emulator is the best when the illumination beam is incident at the angle of 28 degrees in the 3~5 Mu band. Then the vector diffraction model is used to simulate the 8~ 12 U M band, and the beam polarization state is distributed to the intensity distribution of the DMD diffraction. From the simulation results, it is concluded from the simulation results that the illumination beam is polarized by the TM line and the incident angle is adjusted to 48 degrees in the 8~12 mu m band. The diffraction effect can obviously reduce the influence of the diffraction effect on the contrast degree of the DMD target scene emulator. In order to test and verify the DMD diffraction characteristics of the incident angles and polarization states of different beams, the DMD diffraction characteristic measurement system is set up first. Verify and analyze the correctness of the DMD vector diffraction model at 8~12 mu m band. Then combined with the analysis of the quality factors of the system imaging, the influence of the diffraction effect of DMD microlenses and the micro lens and the spontaneous radiation of the projective lens on the contrast of the imaging system are quantitatively measured. Finally, the improved DMD infrared infrared spectroscopy is based on the analysis results of the DMD diffraction specificity experiment. The contrast degree of the target scene simulator is verified experimentally. It is known from the experimental measurement that the illumination beam is polarized on the TM line in 8~12 mu m band, and when the beam is incident at 48 degrees, the micro lens diffraction effect has the least influence on the DMD target scene simulator system and the system imaging pair is the best. The DMD long wave infrared target scene is developed. According to the simulation calculation and experimental measurement results of the DMD diffraction model, the corresponding lighting and projective optical systems are designed. The influence of the DMD diffraction effect on the imaging quality of the system is reduced by the rational layout of the lighting and projection optical path spatial structure and the modulation of the beam characteristics, in which the contrast of the system is improved. The structure design of lighting can not only make the system have a high utilization rate of light energy, but also reduce the structure length of the system. The projection lens is designed by the far center light path, which ensures the matching of the pupil of the projection system and the lighting system and the realization of the system ejection parallel light. Then the performance test of the developed prototype is verified by experimental measurement, in 8~12 mu m The system has a good imaging performance of about 0.85, and can provide high quality long wave infrared target scene conditions for hardware in the loop simulation system.
【学位授予单位】:中国科学院长春光学精密机械与物理研究所
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TJ765.4
【相似文献】
相关期刊论文 前10条
1 袁胜智;谢晓方;郭清风;李洪周;;红外目标图像感兴趣区域自动提取研究[J];电光与控制;2009年07期
2 侯旺;钟立军;张小虎;雷志辉;杨夏;;红外目标分割方法研究[J];国防科技大学学报;2013年02期
3 吕俊杰;赵松庆;;光缆圆弧导轨式红外目标/背景仿真装置[J];航空兵器;1993年03期
4 宋成君,,马萍,张为平,许海谦;红外目标/背景仿真装置故障诊断专家系统[J];哈尔滨工业大学学报;1996年06期
5 李秋华,李吉成,沈振康,朱振福;基于模糊综合的红外目标融合识别[J];国防科技大学学报;2003年01期
6 张忠诚,孟庆华,沈振康;红外目标特征分析[J];激光与红外;1999年03期
7 王章野,吴志华,鲍虎军,彭群生;红外目标与背景的真实感合成[J];计算机辅助设计与图形学学报;2002年11期
8 侯晴宇;张伟;武春风;逯力红;;改进的均值移位红外目标跟踪[J];光学精密工程;2010年03期
9 杨威;李俊山;史德琴;刘婧;;前视红外目标的鲁棒分层跟踪算法[J];弹箭与制导学报;2010年02期
10 孙航;韩红霞;郭劲;曹立华;;基于均值偏移快速算法的红外目标跟踪[J];仪器仪表学报;2012年05期
相关会议论文 前10条
1 吕传峰;樊志英;刘志文;;基于改进的均值移位算法的红外目标跟踪[A];全国第一届信号处理学术会议暨中国高科技产业化研究会信号处理分会筹备工作委员会第三次工作会议专刊[C];2007年
2 郗润平;周涛;陆惠玲;张艳宁;;变背景下红外目标跟踪研究[A];第八届全国信号与信息处理联合学术会议论文集[C];2009年
3 王飞;;基于粒子滤波的红外目标跟踪[A];第八届华东三省一市真空学术交流会论文集[C];2013年
4 张蓉;卓红艳;吴剑涛;李正东;;红外目标前期发现与检测处理实验[A];中国工程物理研究院科技年报(2003)[C];2003年
5 何锡君;陈华础;孟晋丽;;一种实用简洁的红外目标检测方法及其实时实现[A];2010年通信理论与信号处理学术年会论文集[C];2010年
6 王立志;孙国春;杨宝林;;红外目标仿真系统中的随动控制系统设计、建模与调试[A];1995年中国控制会议论文集(下)[C];1995年
7 陈刚;陆成刚;;利用特征加权进行基于小波框架变换的红外目标检测[A];中国图象图形学会第十届全国图像图形学术会议(CIG’2001)和第一届全国虚拟现实技术研讨会(CVR’2001)论文集[C];2001年
8 李炯;雷虎民;李国宏;康红霞;;基于小波网络的红外目标识别[A];第九届全国信息获取与处理学术会议论文集Ⅰ[C];2011年
9 黄治俭;;一种以邻域均值建立背景的红外目标检测新算法[A];全国第十四届红外加热暨红外医学发展研讨会论文及论文摘要集[C];2013年
10 赵钦佩;姚莉秀;何虎翼;杨杰;;一种基于感兴趣区域的红外目标提取方法[A];2006年全国光电技术学术交流会会议文集(D 光电信息处理技术专题)[C];2006年
相关博士学位论文 前6条
1 韩庆;数字微镜器件在红外目标场景仿真器中的应用研究[D];中国科学院长春光学精密机械与物理研究所;2017年
2 张恒;红外目标检测与识别理论与技术研究[D];哈尔滨工程大学;2008年
3 刘瑞明;复杂环境下红外目标检测及跟踪技术研究[D];上海交通大学;2008年
4 王鑫;复杂背景下红外目标检测与跟踪算法研究[D];南京理工大学;2010年
5 郭伟;复杂背景下红外目标检测与跟踪[D];西安电子科技大学;2008年
6 凌建国;红外目标稳健跟踪和识别研究[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 李孟儒;基于MeanShift的红外目标跟踪算法研究[D];沈阳理工大学;2015年
2 刘振奇;高精度大口径低温红外目标源系统关键技术研究[D];哈尔滨工业大学;2015年
3 翟金龙;低温红外目标模拟光学系统设计及反射镜制冷技术研究[D];哈尔滨工业大学;2016年
4 万丽丽;基于背景预测的红外目标检测[D];华中科技大学;2015年
5 邓亚平;基于人类视觉机制的红外弱小目标检测[D];华中科技大学;2015年
6 王玲玲;红外目标检测与跟踪算法研究[D];陕西师范大学;2013年
7 卢珊;红外目标检测识别技术研究[D];长春理工大学;2009年
8 张海洋;基于粒子滤波的红外目标跟踪的研究[D];湖南大学;2012年
9 周薇娜;基于神经网络的红外目标识别研究[D];上海海事大学;2006年
10 李琼;基于红外目标检测的DSP实现[D];上海海事大学;2006年
本文编号:2144153
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2144153.html