纳米金功能化复合催化剂的制备、表征及其在选择性氧化中的应用
[Abstract]:Selective oxidation of organic matter is involved in many aspects of chemical industry and occupies an important position in the chemical industry. However, the selective oxidation process of organic compounds is due to the existence of more parallel and series reaction, especially in the high temperature conditions, which causes the adverse reaction of the catalyst to be more serious, so that the target product is selectively reduced. High activity and high selectivity catalytic oxidation under mild conditions have attracted wide attention, but it is also a very challenging task. For this reason, the preparation, characterization and application of nano gold functionalized composite catalysts were studied in this paper. The paper is divided into seven chapters. The load of manganese porphyrin metal organic skeleton is studied. The preparation, characterization of Au/MnPS and the selective oxidation of cyclohexene, the preparation of gold centered metal organic framework catalyst AuBTC, characterization and selective oxidation of benzyl alcohol, the preparation of Au/ Al_2O_3 microchannel reactor and its cyclohexane selection on the inner wall coated gold nanoparticle catalyst were studied. The specific conclusions are as follows: first, Au/MnPS. was successfully prepared by hydrothermal synthesis and impregnation. The TEM characterization of the catalyst showed that the MnPS crystal was a dark cubic crystal structure, part of which was light colored amorphous structure, and the gold and particle size of large particles were less than 10nm, indicating that gold nanoparticles were successfully loaded; XRD table. It shows that the structure of MnPS is similar to manganese carbonate, which provides the possible selective oxidation performance of.Au/MnPS catalyzed cyclohexene. The reaction solvent, oxidizer, temperature, reaction time, reaction pressure, the amount of catalyst, the amount of gold load and so on all have influence on the reaction performance. In addition, the amount of cyclohexene is 10mmol, the amount of Au/MnPS gold load is 2wt%, the amount of catalyst is 0.2g, acetonitrile is the solvent and the tert butyl peroxide containing a small amount of water is used as oxidant. The reaction temperature is 35 C and the reaction time 15h is better. At this time, the conversion rate of cyclohexene is the highest and the epoxide cyclohexane is 75.1%, and the height of the cyclohexane is 75.1%. As for cyclohexene oxidation, the amount of cyclohexene is 10mmol, the amount of Au/MnPS gold load is 0.25%, the amount of catalyst is 0.1g, the acetonitrile is the solvent, the 4-5 drop TBHP is the initiator, the reaction temperature is 120, the reaction pressure is 1.2MPa, the reaction time 10h is better, the conversion rate of cyclohexene is the highest at this time, and the epoxide cyclohexane is selective. 83.0%. the catalyst was reused for 4 times without obvious loss of activity, indicating that the catalyst had good cyclic catalytic performance. Then, AuBTC catalyst was successfully prepared by hydrothermal synthesis. The catalyst XRD showed that the catalyst had a crystal structure similar to HKUST-1 (CuBTC), and gold had formed its crystal structure; SEM characterization showed gold and average benzene. After hydrothermal synthesis of formic acid, a new crystal has been formed. This crystal has a lamellar structure of columnar structure.AuBTC used in the selective oxidation of benzyl alcohol by molecular oxygen. The reaction time, reaction temperature, and the amount of catalyst have an effect on the catalytic performance. The amount of benzyl alcohol in the reactant is 10mmol, acetonitrile. For the solvent, 4-5 drops of TBHP as an initiator, the amount of catalyst is 0.10g, the reaction time is 15h, the reaction temperature is 80, the reaction pressure is 1.0MPa, the conversion rate of benzyl alcohol is 11.8%, the selectivity of benzaldehyde is 90.3%., the cycle performance of the catalyst is clear, and the selectivity of benzaldehyde after the reuse of the catalyst is better than that of the catalyst. Finally, the TEM and XRD of the Au/Al_2O_3 microchannel reactor.Au/Al_2O_3 catalyst for the inner wall coated nano gold catalyst were successfully prepared by the internal wall coating method of independent innovation. The nano gold particles in the catalyst were uniformly dispersed in the ultrafine alumina carrier, and the inner wall of the acid washing microtubule was displayed by the SEM characterization in the microtubule before the catalyst coating. The reaction temperature is 180 C, the reaction pressure is 3MPa, the retention time is 4min, the gas and liquid molar ratio of oxygen and cyclohexane is better than 0.3:1, and the conversion rate of cyclohexane is 2.09%, cyclohexanol, cyclohexanone, cyclohexyl hydrogen peroxide and adipic acid are selected. The 29.4%, 39.9%, 2.46% and 18.9%. experiments showed that the coated nano gold catalyst coated with the stainless steel microtubule was feasible and could significantly shorten the time of the reaction and improve the safety of the operation process. In summary, the nano gold functionalized composite catalyst not only had good effect on the selective oxidation of organic matter. It has great potential for industrial application, and has high academic research value. It is worth further exploring.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ426
【相似文献】
相关期刊论文 前10条
1 胡健,许广华;认知纳米及其应用[J];工业技术经济;2001年04期
2 ;纳米新产品[J];黄金科学技术;2002年01期
3 张百奇;纳米金的应用[J];黄金;2003年06期
4 马琨;透视"纳米热"[J];深圳特区科技;2004年Z4期
5 萧斌;;当“纳米”与“化工”相遇——记湘潭大学化工学院副院长周继承教授[J];中国高校科技与产业化;2009年06期
6 汤倩;张燕;王钜;;纳米科技及其在地学上应用[J];科技传播;2010年22期
7 蒋国翔;沈珍瑶;牛军峰;庄玲萍;何天德;;环境中典型人工纳米颗粒物毒性效应[J];化学进展;2011年08期
8 丹丘生;;纳米金粒子的妙用[J];大科技(科学之谜);2012年11期
9 滑晓晖;纳米新产品——黄金新的工业用途[J];江西地质;2001年03期
10 ;国外纳米进展[J];中国新技术新产品精选;2001年Z1期
相关会议论文 前10条
1 廉学明;金洁;田佳;赵汉英;;具有温度响应可逆收缩的纳米金球簇[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
2 李传新;潘春旭;;纳米科技现状及展望[A];中南地区第十六届电子显微镜学术交流会论文集[C];2007年
3 何微娜;林丰;郭祥群;;自旋标记-发光纳米金多模式探针研究[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年
4 余玲;张彦峥;王亚丹;张银堂;徐茂田;;非标记纳米金光谱法检测雌激素[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年
5 郭彬;李青山;;纳米功能性纺织品的最新研究进展[A];雪莲杯第10届功能性纺织品及纳米技术应用研讨会论文集[C];2010年
6 贾文峰;李津如;林官华;江龙;;简单方法制备单分散纳米金花及其表面拉曼增强应用[A];中国化学会第十三届胶体与界面化学会议论文摘要集[C];2011年
7 李竟先;鄢程;吴基球;;纳米颗粒制备过程中的机械力化学效应[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
8 唐芳琼;;尺寸、结构、形貌可控纳米颗粒制备与调变技术开发[A];纳微粉体制备与应用进展——2002年纳微粉体制备与技术应用研讨会论文集[C];2002年
9 李军;纪小慧;洪霞;王连英;贾若昆;菅文平;白玉白;;基于纳米晶特性的免疫检测研究[A];2003年纳米和表面科学与技术全国会议论文摘要集[C];2003年
10 袭著革;;纳米毒理学研究进展[A];中国毒理学会环境与生态毒理学专业委员会成立大会会议论文集[C];2008年
相关重要报纸文章 前10条
1 本报记者 刘俊;“纳米食品”安全存疑[N];广州日报;2010年
2 张阳德;我国纳米生物医药科技发展的战略思考[N];科技日报;2003年
3 本报记者 童岱;刘扬:发现“神水”之毒[N];北京科技报;2009年
4 本报记者 贾书哲;拨开迷雾看纳米[N];中国质量报;2002年
5 何屹;纳米金晶簇的催化活性与大小有关[N];科技日报;2008年
6 本报记者 李胜;一吨值一亿美元[N];深圳商报;2002年
7 李树龙;小纳米 大神通(上篇)[N];中国黄金报;2001年
8 记者 任荃;纳米金球让基因拷贝不走样[N];文汇报;2006年
9 中国包装联合会纸委会副秘书长 陈希荣;微观色彩学与包装设计应用[N];中国包装报;2010年
10 张唯诚;显微世界中的DNA纳米机器人[N];大众科技报;2010年
相关博士学位论文 前10条
1 刘懿;纳米金功能化复合催化剂的制备、表征及其在选择性氧化中的应用[D];浙江大学;2017年
2 冯永海;Au、Ag、Pd、Cu、Ni纳米催化剂设计构筑与催化氧化还原研究[D];江苏大学;2015年
3 陈娜;纳米金对胶质瘤放射增敏作用的研究[D];苏州大学;2015年
4 杨洁;宽频纳米结构光天线特性的研究[D];山东大学;2015年
5 张晶;新型纳米生物探针的构建及其应用[D];北京理工大学;2015年
6 陈坤;功能化纳米金光学分子探针的构建及其用于三聚氰胺和转基因分析检测[D];华中农业大学;2013年
7 秦为为;等离子纳米粒子在可视化成像检测及纳米马达中的应用[D];中国科学院研究生院(上海应用物理研究所);2016年
8 董海峰;DNA检测与细胞内microRNA分析新方法研究[D];南京大学;2011年
9 张守仁;纳米金和二氧化钛基复合材料的可控合成、性质和催化应用研究[D];郑州大学;2016年
10 李群芳;多功能纳米标记探针作为信号放大电化学免疫传感器研究[D];福州大学;2014年
相关硕士学位论文 前10条
1 寇瑞花;壳聚糖基金纳米棒的构建及其纳米药物载体的研究[D];北京协和医学院;2015年
2 何路伟;染料敏化的氧化锌“纳米草坪”的构建及其光催化制氢性能[D];上海应用技术学院;2015年
3 熊海岩;钯、铂、金基纳米催化剂的制备及其性能研究[D];山东大学;2015年
4 席春晓;棒状金纳米晶及类球形银纳米晶的可控制备与性能研究[D];山东大学;2015年
5 谢芳;择优腐蚀制备新颖金铂异质纳米结构[D];山东大学;2015年
6 梁莹;Anti-cMet抗体耦合空心纳米金球对宫颈癌光热治疗增敏之作用研究[D];山东大学;2015年
7 刘晶;纳米金—声致发光分析方法研究[D];陕西师范大学;2015年
8 何逸鹏;纳米金与不同亚型乳腺癌细胞相互作用的初步研究[D];福建师范大学;2015年
9 韦正楠;基于富勒烯@金纳米等离子体的Fenton催化传感器研究[D];重庆大学;2015年
10 潘欢欢;一维半导体纳米结构可控制备及其光电探测器的研究[D];苏州大学;2015年
,本文编号:2170530
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2170530.html