混合多端直流输电运行特性研究
[Abstract]:Traditional DC (LCC-HVDC) and flexible DC (VSC-HVDC) have their own advantages and disadvantages, the two have different applications. The traditional DC transmission capacity is large, low loss, suitable for large capacity long distance transmission, flexible DC control flexible, easy to form multi terminal DC, suitable for new energy access and power supply to weak AC system. Hybrid multi end direct Combined with the advantages of traditional DC and flexible DC, the flow can supply power supply with multi power supply, and provide a more flexible and fast transmission mode to obtain the greatest economic and technical benefits. At present, the electric power industry is developing to speed up the use of clean energy and large scale power grid interconnection, and mixed multi terminal direct current transmission. Electricity will play a very important role in the development of the power system, and some of the existing projects already have the prototype and assumption of mixed multi terminal DC. Therefore, it is necessary to do a thorough study on the running characteristics of the mixed multi terminal DC, and prepare for the practical application of the Mixed Multi terminal DC. The main contents of this paper are as follows: (1) the hybrid multi terminal DC self-control decentralized control strategy based on the conformance algorithm is studied. In this control method, the terminals can obtain the global information only through communication with adjacent terminals, and reduce the requirements for the performance and reliability of the communication system. The terminals can run in relative independence and cooperate with each other to complete the optimization of the system. The control target can not only realize the fine adjustment of the terminal operation points, but also can control the terminals according to the actual conditions. Compared with the centralized control, this control method does not need the central control unit, and it will have a wide application foreground in the increasing scale of the DC power grid. (2) the influence of mixed multiterminal HVDC system is studied. It is pointed out that the optimization of mixed multiterminal DC loss needs to seek the best of two conflicting targets: on the one hand, to make the minimum loss of the DC voltage as high as possible and the power as far as possible through LCC; on the other hand, the end LCC will turn to the fixed gamma control when the current is large, and VSC is required at this time. The DC voltage is reduced so as to avoid more DC current flow through the LCC inverter end, which will lead to the failure of the commutation, and the decrease of the DC voltage will lead to the increase of loss. On this basis, this paper applies the self disciplined decentralized control based on the consistency algorithm to the loss loss optimization of mixed multi terminal DC, so that each terminal can cooperate with each other to reach the advantage of each other. Aiming at different operation modes, this paper also compares the optimization results when the global information integrity is different and the number of terminals participating in the optimization control. The conclusion is that the higher the global information integrity is, the more terminals involved in the optimization control, the smaller the loss of the system loss. (3) the study is applicable to the mixed multi terminal. The control strategy of the VSC terminal connected to the wind power isolated island in DC. Due to the randomness and volatility of wind energy, the wind power base should take the island operation mode and provide the AC voltage with the VSC. Therefore, this paper designs the model predictive control for the VSC terminal in the mixed multi terminal DC. The control strategy has set up the preview of the AC and DC side of the VSC. The test model, without PI link, can obtain the optimal solution of modulation wave in several sampling periods, avoid the interaction with the PI link in the doubly fed fan controller, and have good anti disturbance ability and fault recovery performance when the wind speed fluctuates and the AC and DC faults. (4) studying the transmission of the AC background harmonics through the MMC and its cause. The harmonic suppression control strategy of DC network is designed and the corresponding harmonic suppression control strategy is designed. Firstly, the influence of the background harmonic voltage on the MMC bridge arm voltage is analyzed theoretically, and the transmission mechanism of the background harmonics through the MMC to the DC side and the remote AC system is revealed. Then the 4 terminal DC transmission system composed of MMC is used as an example. The frequency impedance characteristic of DC network is analyzed and the reason of harmonic amplification caused by DC network resonance is obtained. On this basis, a harmonic suppression control strategy using MMC sub module capacitance energy storage capacity is designed to suppress DC network resonance and harmonic transmission caused by the AC background harmonics. The simulation in PSCAD/EMTDC shows that this paper is used in this paper. The proposed control strategy can effectively suppress the propagation of the background harmonics to the DC network and avoid the resonant phenomenon of the DC network due to the background harmonics. In the mixed multi terminal DC system composed of MMC and LCC, the DC network still has several resonant frequencies. This paper proposes a harmonic suppression control strategy using the capacitive energy storage capacity of the MMC sub module. It can also be used to suppress the harmonic transmission of hybrid multiterminal DC.
【学位授予单位】:华北电力大学(北京)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM721.1
【相似文献】
相关期刊论文 前10条
1 张伟;;枢纽中多个场的信号集中及分散控制方案[J];铁路通信信号工程技术;2013年05期
2 李嗣福;;模型预测控制及其应用[J];机械与电子;1990年01期
3 李正强;张怡哲;邓建华;陈琪;;基于模型预测控制的非线性飞行控制系统研究[J];飞行力学;2009年01期
4 马艳;卜丽;孙长江;;基于模型预测控制的乳化物干燥控制系统[J];制造业自动化;2011年15期
5 刘向杰;孔小兵;;电力工业复杂系统模型预测控制——现状与发展[J];中国电机工程学报;2013年05期
6 彭勇刚;韦巍;王均;;时滞约束系统的神经动态优化模型预测控制[J];仪器仪表学报;2013年05期
7 陈国定;饶宁;;混凝投药系统的双层结构模型预测控制策略[J];浙江工业大学学报;2013年04期
8 崔连德;;继续向分散控制迈进[J];仪表工业;1989年01期
9 刘子丰,高广民;关于交联系统分散控制的进一步研究[J];东北工学院学报;1990年05期
10 张庆灵;广义交联系统的分散控制[J];东北工学院学报;1993年05期
相关会议论文 前10条
1 周帝;赵可君;;模型预测控制中的硬约束松化研究[A];全国冶金自动化信息网2014年会论文集[C];2014年
2 于海芬;谭文;;四容水箱的部分分散控制[A];第25届中国控制与决策会议论文集[C];2013年
3 郭令忠;李彦平;徐心和;;实时并发离散事件动态系统的分散控制[A];1993年控制理论及其应用年会论文集[C];1993年
4 钟万勰;吴志刚;高强;梁以德;;H_∞分散控制的模态综合法[A];第二十一届中国控制会议论文集[C];2002年
5 孙妙平;年晓红;;关联电力大系统的非线性分散控制[A];第二十七届中国控制会议论文集[C];2008年
6 杨马英;;模型预测控制的性能监视与评价——综述[A];第二十一届中国控制会议论文集[C];2002年
7 武俊峰;王振英;;基于状态观测器的约束鲁棒模型预测控制[A];04'中国企业自动化和信息化建设论坛暨中南六省区自动化学会学术年会专辑[C];2004年
8 周明;周坚刚;余达太;;钢铁企业模型预测控制技术综述[A];冶金轧制过程自动化技术交流会论文集[C];2005年
9 张聚;张海华;;时延网络控制系统的显式模型预测控制[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
10 孙功勤;李小华;陈雪波;;改进的多区域环型电力系统鲁棒分散控制方法[A];2007中国控制与决策学术年会论文集[C];2007年
相关博士学位论文 前10条
1 许冬;混合多端直流输电运行特性研究[D];华北电力大学(北京);2017年
2 孙银锋;柔性直流输电系统建模及小干扰稳定性研究[D];华北电力大学(北京);2017年
3 孔小兵;非线性模型预测控制及其在发电过程控制中的应用[D];华北电力大学;2014年
4 张浪文;网络信息模式下分布式协调模型预测控制研究[D];上海交通大学;2015年
5 宋建筑;基于市场机制的结构分散控制研究[D];大连理工大学;2016年
6 何文杰;原子层沉积系统设计及其温度的模型预测控制研究[D];华中科技大学;2016年
7 岳俊红;复杂工业过程多模型预测控制策略及其应用研究[D];华北电力大学(北京);2008年
8 周庆生;建筑结构振动的递阶分散控制研究[D];哈尔滨工业大学;2009年
9 冯少辉;模型预测控制工程软件关键技术及应用研究[D];浙江大学;2003年
10 苏成利;非线性模型预测控制的若干问题研究[D];浙江大学;2006年
相关硕士学位论文 前10条
1 边靖洲;柔性多端直流输电系统控制策略研究[D];天津大学;2016年
2 李德q,
本文编号:2170841
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2170841.html