当前位置:主页 > 硕博论文 > 工程博士论文 >

基于聚丙烯酸酯类温敏聚合物的柔性智能纺织品的研究

发布时间:2018-08-20 20:26
【摘要】:智能纺织品(smart/intelligent textiles)是近几十年来新崛起的,对人类生活具有变革意义的新型纺织材料。智能纺织品的开发与应用是各种高新技术在纺织品上的集中体现,涉及到纺织与生物、化学、物理、电子领域的交叉与融合,具有较高的研究价值。智能纺织品智能化功能的实现基于智能材料,其中温度响应性聚合物由于响应不依赖于其它化学助剂,温度响应速度快而且剧烈,其相关结构的研究成为智能材料领域的一个热点。在温度的刺激下,温敏聚合物具有体积膨胀/收缩,表面亲/疏水性转变的特性。通过物理或者化学方法将温敏聚合物与纺织品相结合,将赋予传统纺织品独特的性能与高附加值,因此温敏聚合物在智能纺织品领域有很大的应用前景。本文首先合成了具有乙氧基链段的聚丙烯酸酯类温敏聚合物,获知了聚丙烯酸酯类温敏聚合物不同分子形态对温敏性能的影响,探明了分子形态、结构与其转变行为的内在联系与规律。进一步以纤维素为过渡基底,模拟温敏聚合物在纺织品上的结合状态,探究了基底对聚合物交联薄膜表面形貌、转变行为的影响,为基于聚丙烯酸酯类温敏聚合物的智能纺织品的制备与应用奠定了理论基础。最后通过交联反应,将温敏聚合物固定于棉织物表面,制备获得了具有智能清洁、舒适调控与抗菌功能的纺织品。(1)采用单体2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)、聚环氧乙烷甲基丙烯酸酯(OEGMA300)与末端含有羟基的聚(乙二醇)甲基丙烯酸酯(EGMA360)通过原子转移自由基聚合(ATRP)合成无规共聚物聚(2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯-共聚-聚环氧乙烷甲基丙烯酸酯)P(MEO2MAco-OEGMA300)和聚(2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯-共聚-聚(乙二醇)甲基丙烯酸酯)P(MEO2MA-co-EGMA360),研究了温敏聚合物分子形态以及结构对温敏性能的影响。溶液性能测试表明,P(MEO2MA-co-OEGMA300)、P(MEO2MAco-EGMA360)水溶液(10 mg/m L)的相转变温度(TT)分别为35oC、36oC,且P(MEO2MA-co-EGMA360)水溶液具有更宽的相转变区间。薄膜性能测试表明,由于P(MEO2MA-co-EGMA360)侧链末端含有羟基,因此其膨胀率较高,但是该羟基不具有温敏性,导致温敏转变特性减弱,表现出更宽的转变区间,该结果与水溶液中的转变行为一致。此外,由于基底的限制,温敏聚合物薄膜的温敏性能仅能表现为膜厚的改变,在相转变过程中,水分的排出过程亦仅能在垂直于基底的方向上,以扩散的形式实现,从而导致温敏聚合物薄膜的转变行为较溶液更迟滞和平缓。(2)为进一步探究基底对聚丙烯酸酯类温敏聚合物温敏表面形貌、温敏性能的影响。首先合成了三甲基硅纤维素(tmsc)并在硅片上旋涂成膜,利用取代反应制备了再生纤维素(rc)薄膜,并进一步通过交联反应使p(meo2ma-co-egma360)与rc基底相结合。结果表明,取代度为2.21的tmsc在氯仿溶液中溶解性能好,通过旋涂在硅基底上获得均一的tmsc薄膜。经取代反应后,tmsc薄膜粗糙度明显增加,表面生成一层25nm的rc薄膜。转变温度以上时,p(meo2ma-co-egma360)交联聚合物薄膜相邻链段之间相互靠近,移动过的相应位置由于没有聚合物的覆盖,在最低处形成缝隙或者孔洞,导致底层纤维素部分区域裸露出来。p(meo2ma-co-egma360)交联薄膜厚度在30-35oc明显下降,且表面发生亲疏水性的转变,这为温敏聚合物p(meo2ma-co-egma360)在织物上的应用奠定了理论基础。(3)选用单体摩尔比为17:3的温敏性共聚物p(meo2ma-co-egma360)与棉织物发生交联,制备了具有温敏性的智能纺织品,测定并分析了其智能清洁以及舒适调控性能。结果表明,聚合物浓度为8%的交联整理液经130oc焙烘2min与棉织物反应,获得的交联棉织物平衡溶胀率(esr)、接触角(ca)以及润湿时间(wt)在35-40oc之间发生突变,表明制备获得的交联棉织物具备有较好的温敏性能。由于p(meo2ma-co-egma360)在转变温度以下的亲水性,显著增强了交联棉织物清洁性能;温度超过转变温度时,p(meo2ma-co-egma360)薄膜表面由致密的膜结构转变为多孔结构,因此能够实现对透气透湿的调节,提高织物的穿着舒适性。经交联反应后,织物耐洗性、耐摩擦牢度在可接受的范围内,且白度、柔软度、机械性能没有受到影响。(4)考虑到聚(n-异丙基丙烯酰胺)pnipam具有生物相容性,且与pegma360的共聚可大大降低其玻璃化转变温度(tg)。首先合成一系列不同单体摩尔比的共聚物p(nipam-co-egma360),采用交联方法,制备具有智能舒适调控以及抗细菌粘附性能的医用纺织品。结果表明,共聚物P(NIPAM-co-EGMA360)随着单体EGMA360含量的增加,Tg下降,热稳定性降低,TT升高。P(18NIPAMco-2EGMA360)的Tg为0 oC,TT为40 oC,热稳定性优良,因此P(18NIPAM-co-2EGMA360)的引入不会影响到交联棉织物的柔软度。P(18NIPAM-co-2EGMA360)交联棉织物的转变区间为36-39oC。基于PNIPAM的温敏性,在温度的刺激下,交联棉织物能够通过改变表面聚合物层的孔隙大小,实现透气/湿性能的调节,具有智能舒适调控功能。此外由于EGMA360的亲水性,在交联棉织物表面形成一层亲水性的薄膜,抑制交联织物表面细菌的吸附。同时,P(NIPAM-co-EGMA360)交联棉织物具有良好的耐洗牢度,且温度响应稳定,满足智能纺织品日常生活中功能稳定性的要求。
[Abstract]:Smart / intelligent textiles is a new type of textile material which has been rising in recent decades and is of great significance to human life. Intelligent textiles are based on smart materials. Temperature-responsive polymers respond rapidly and violently because they do not depend on other chemical auxiliaries. Research on their related structures has become a hot spot in the field of smart materials. Temperature-sensitive polymers have volume expansion/expansion under the stimulation of temperature. The combination of thermosensitive polymers with textiles by physical or chemical methods will endow traditional textiles with unique properties and high added value. Thermo-sensitive polymers have a great application prospect in the field of intelligent textiles. The effect of different molecular forms of polyacrylate thermosensitive polymers on the thermosensitive properties was studied. The relationship between molecular morphology, structure and transition behavior was explored. The influence of film surface morphology and transformation behavior laid a theoretical foundation for the preparation and application of smart textiles based on polyacrylate thermosensitive polymers. Finally, the thermosensitive polymers were immobilized on the surface of cotton fabrics by cross-linking reaction, and the smart, clean, comfortable, controlled and antibacterial textiles were prepared. Random Copolymer Poly (2-methyl-2-acrylic acid-2-(2-methoxyethoxy) ethyl ester (MEO2 MA), poly (ethylene oxide methacrylate) (OEGMA300) and poly (ethylene glycol) methacrylate (EGMA360) containing hydroxyl groups were synthesized by atom transfer radical polymerization (ATRP). The effects of molecular morphology and structure of ethane methacrylate P (MEO2 MAco-OEGMA300) and poly (2-methyl-2-acrylic acid-2-(2-methoxyethoxy) ethyl ester-copoly-poly (ethylene glycol) methacrylate P (MEO2 MA-co-EGMA360) on the thermosensitive properties were studied. Solution performance test showed that P (MEO2 MA-co-OEGMA300), P (MEO2 MAco-EGM-EGMA300) and P (MEO2 MA-co-EGM-EGMA360) were sensitive to temperature. The phase transition temperature (TT) of A360 aqueous solution (10 mg/m L) is 35oC, 36oC, and P (MEO2 MA-co-EGMA 360) aqueous solution has a wider phase transition range. The film performance test shows that the expansion rate of P (MEO2 MA-co-EGMA 360) is higher because of the hydroxyl group at the end of the side chain, but the hydroxyl group is not temperature-sensitive, resulting in the weakening of the temperature-sensitive transition characteristics. In addition, due to the limitation of the substrate, the temperature-sensitive properties of the thermosensitive polymer films can only change the thickness of the films. During the phase transition, the water release process can only be carried out in the direction perpendicular to the substrate and in the form of diffusion, which leads to the temperature-sensitive polymerization. (2) To further explore the effect of substrate on the surface morphology and temperature-sensitive properties of polyacrylate thermosensitive polymers, trimethylsilicone cellulose (tmsc) was synthesized and spin-coated on silicon wafer, and regenerated cellulose (rc) films were prepared by substitution reaction. P (meo_2ma-co-egma 360) was combined with RC substrate by overcrosslinking reaction. the results showed that TMSC with substitution degree of 2.21 had good solubility in chloroform solution. homogeneous TMSC films were obtained by spin-coating on silicon substrate. after substitution reaction, the roughness of TMSC films increased significantly, and a 25 nm RC film was formed on the surface of TMSC films. O-egma360 crosslinked polymer film adjacent chains close to each other, the corresponding position of the moving due to no polymer coverage, at the lowest point of the formation of gaps or holes, resulting in the exposed part of the underlying cellulose. P (meo2ma-co-egma360) crosslinked film thickness at 30-35oc decreased significantly, and the surface of hydrophilic transition occurred. It lays a theoretical foundation for the application of temperature-sensitive polymer P (meo2ma-co-egma 360) in fabrics. (3) The temperature-sensitive copolymer P (meo2ma-co-egma 360) with a molar ratio of 17:3 was selected to cross-link with cotton fabrics, and the temperature-sensitive intelligent textiles were prepared. The equilibrium swelling ratio (esr), contact angle (ca) and wetting time (wt) of the cross-linked cotton fabrics obtained by the reaction of the cross-linking finishing solution with 8% complex concentration and the cotton fabrics baked at 130 OC for 2 minutes showed that the cross-linked cotton fabrics had better temperature-sensitive properties, because P (meo2ma-co-egma360) was below the transition temperature. Hydrophilicity, significantly enhance the cleanliness of cross-linked cotton fabrics; when the temperature exceeds the transition temperature, P (meo2ma-co-egma360) film surface from dense membrane structure into porous structure, so it can be achieved to adjust the permeability and moisture permeability, improve the wearing comfort of the fabric. (4) Considering the biocompatibility of poly (n-isopropylacrylamide) P NIPAM and the copolymerization with pegma 360, the glass transition temperature (tg) of poly (n-isopropylacrylamide) P NIPAM can be greatly reduced. The results showed that with the increase of the content of monomer EGMA360, the Tg of copolymer P (NIPAM-co-EGMA360) decreased, the thermal stability decreased, and the TT of copolymer P (18NIPA Mco-2EGMA360) increased. The Tg of P (18NIPA Mco-2EGMA360) was 0 oC, TT was 40 oC, and the thermal stability was excellent. Therefore, the introduction of P (18NIPAM-co-2EGMA360) would not affect the crosslinking. Flexibility of cotton fabrics. The transition range of P (18NIPAM-co-2EGMA360) cotton fabrics is 36-39oC. Based on the temperature sensitivity of PNIPAM, cross-linked cotton fabrics can adjust the air permeability and moisture permeability by changing the pore size of the surface polymer layer under the stimulation of temperature. Moreover, due to the hydrophilicity of EGMA360, it has the function of intelligent and comfortable control. A hydrophilic film was formed on the surface of the cross-linked cotton fabric to inhibit bacterial adsorption on the surface of the cross-linked fabric. At the same time, the P (NIPAM-co-EGMA360) cross-linked cotton fabric has good wash fastness and stable temperature response, which meets the requirements of functional stability in daily life of intelligent textiles.
【学位授予单位】:浙江理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TS195.5

【参考文献】

相关期刊论文 前10条

1 吴金丹;钟齐;王际平;;温敏智能纺织材料的研究进展[J];中国材料进展;2014年11期

2 屠吉利;刘今强;;基于PhabrOmeter的毛巾织物手感风格评价[J];纺织学报;2013年08期

3 卢胜权;;智能纺织品的现状和发展趋势[J];轻纺工业与技术;2013年01期

4 王香琴;辛斌杰;许鉴;;智能纺织品的研究进展及发展趋势[J];国际纺织导报;2012年10期

5 陈志林;;智能服装开发与应用现状[J];纺织科技进展;2010年02期

6 宋翠艳;张春花;;高性能防护服在欧洲的应用[J];中国个体防护装备;2009年04期

7 刘书芳;顾振亚;牛家嵘;;基于涂层法的凝胶复合型智能抗浸面料制备[J];纺织学报;2009年08期

8 甄志超;胡燕;李朝顺;李文东;季君晖;;抗菌纺织品的发展[J];新材料产业;2009年07期

9 黄鹤,严灏景;智能纺织品[J];印染;2005年07期

10 刘红艳,万关良,闫志瑞;硅片清洗及最新发展[J];中国稀土学报;2003年S1期



本文编号:2194892

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2194892.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3cb43***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com