当前位置:主页 > 硕博论文 > 工程博士论文 >

新型成炭剂的设计及其阻燃聚合物材料的热稳定性和燃烧性能的研究

发布时间:2018-08-29 09:19
【摘要】:现如今,聚合物材料因具有耐磨性、耐腐蚀性、和电绝缘性等优异的性能,在我们日常生活中有着广泛的应用。同时,它们由于其自身的易燃性被大家所熟知。一旦在住所,运输和公共场所中发生火灾,火焰与高温极易使聚合物材料熔化并且使其产生熔体滴淌,进而导致火焰蔓延的速度增加并伴随有毒气体和烟雾的产生。聚合物材料高度的易燃性不仅限制了其进一步的应用和发展,而且极其容易发生火灾以及造成人员伤亡和严重的经济损失。因此,提高聚合物材料的阻燃性能是一项严峻的挑战。论文对常用聚合物材料(聚丙烯和聚对苯二甲酸丁二醇酯)的阻燃技术和方法进行了系统综述。根据分子设计,制备了一系列含磷/氮成炭剂,使其具备突出的成炭能力。这些聚合型成炭剂用于阻燃聚丙烯材料,以期获得高效的阻燃性能和良好的耐水性。另外,为了解决聚磷酸铵(APP)耐水性差的问题,引入微胶囊化技术。考虑纳米复合技术的优势,一步法制备含三嗪聚合型成炭剂(HCFAs)和剥离钠基蒙脱土(Na-MMT)的新型纳米复合阻燃剂。最后,为了进一步拓宽HCFA在其他聚合物材料中的应用,研究了玻纤增强聚对苯二甲酸丁二醇酯(GFPBT)/HCFA/二乙基次磷酸铝(AlPi)的热降解和燃烧特性。本论文的主要研究进展包含以下几个部分。1.采用一步法合成一种新型、具有较高产率(86.5%)的环三磷腈类大分子成炭剂(CPCFA)。将其与微囊化聚磷酸铵(MAPP)复配引入到聚丙烯(PP)材料中,通过熔融共混法制备阻燃聚丙烯材料。与PP/MAPP对比发现,PP/MAPP/CPCFA体系的极限氧指数(LOI)值明显提高,垂直燃烧(UL-94)均能达到V-0级,并且对应的热释放速率(HRR)值明显降低。以上研究结果表明MAPP和CPCFA的复配对PP有着很高的阻燃效率。热重分析结果表明CPCFA的存在,可以促进PP/MAPP/CPCFA在氮气和空气下炭层的形成及提高残炭量。最后,耐水性测试结果表明MAPP/CPCFA的比值在3:1和2:1时,聚合物材料具有优异的耐水性能。在经过热水浸泡72h后,仍然可以达到UL-94 V-0等级。2.为了进一步提高阻燃剂的阻燃效率和降低其成本,制备了一系列基于三嗪结构的大分子成炭剂(HCFAs),并对其结构进行表征。使用傅里叶变换红外光谱(FTIR)、固体核磁13C谱和元素分析(EA)对HCFAs的化学结构进行表征。热重分析(TGA)和水溶性试验用来评价HCFAs的热稳定性和耐水性能。相应的实验结果表明HCFAs具有极好的热稳定性,突出的成炭能力和优异的疏水性,可以作为高效的成炭剂应用到聚合物材料中。在这一系列三嗪类的大分子成炭剂中,含三嗪环和哌嗪环的PA-HCFA呈现出最好的热稳定性和极强的成炭能力。由HCFAs和聚磷酸铵(APP)组成的新型膨胀型阻燃剂(IFR)制备阻燃PP复合材料。采用TGA,极限氧指数(LOI),垂直燃烧试验(UL-94),锥形量热计(Cone)和耐水性测试分别来评价PP/IFR体系的热降解,燃烧行为和耐水性能。在氮气和空气下的TGA结果表明,HCFA/APP可以提高PP/IFR的残炭量和高温下的热稳定性。LOI和Cone结果表明,IFR(APP/HCFAs)的加入显著的提高了 PP/IFR的LOI值并有效的降低了如热释放速率(HRR)等锥形量热计参数。扫描电子显微镜(SEM)测试表明IFR(APP/HCFA)的引入有利于材料表面在燃烧过程中形成膨胀且致密的炭层,进而可以有效的阻止内部的基材进一步降解和燃烧。此外,PP复合材料经过热水浸泡处理,它的阻燃性能并未受到很大的影响。3.作为膨胀型阻燃剂(IFR)中极其重要的组成成分,酸源聚磷酸铵(APP)由三聚氯氰和哌嗪进行改性来提高其耐水性。得到的改性聚磷酸铵(CFA-APP)通过FTIR,EA,X射线光电子能谱(XPS)和SEM等对其结构进行表征。水溶性测试表明CFA-APP具有优异的耐水性。这种集碳源、酸源和气源于一体的CFA-APP通过熔融共混法单独用于制备阻燃PP。采用LOI,UL-94和锥形量热计(CC)来研究PP,PP/APP和PP/CFA-APP体系的阻燃性能。相应的结果表明:与PP/APP相比,PP/CFA-APP复合材料具有更好的阻燃性能。当CFA-APP的添加量为25%时,PP/CFA-APP体系的LOI值提高到34.5%,并且可以通过垂直燃烧的V-0测试。CC结果表明,在同等添加量下,CFA-APP在PP基体中比APP具有更好的阻燃性能,包括更低的PHRR值,FGI和CO释放量。通过热重分析来评估PP复合材料的热降解行为,与未改性的APP相比,三嗪类大分子成炭剂作为壳层可以有效地提高CFA-APP和PP复合材料的热稳定性。该壳层促进了 PP和CFA-APP的提前分解,进而导致在高温下具有更好的热稳定性。这主要得益于它在聚合物材料表面形成高强度和高热稳定性的炭层,在燃烧期间可以有效地阻隔热量和氧气的传递和扩散。数码照片和SEM图直观地说明,与PP/APP相比,PP/CFA-APP复合材料在燃烧过程中,形成了更紧凑和稳定的炭层。以上结果表明,对APP进行化学改性是提高PP复合材料阻燃性能和耐水性的一种有效方法。4.选用一种有机改性蒙脱土(OMMT)作为阻燃协效剂,与聚磷酸铵(APP)和三嗪类大分子成炭剂(PA-HCFA)一同制备PP/IFR/OMMT复合材料。通过调节OMMT、APP和PA-HCFA不同的配比,来探讨它们三者之间的协同阻燃作用。实验结果表明,当IFR与OMMT的总添加量为20%时,显现出积极的作用并且明显的改善了 PP体系的阻燃性能。当阻燃剂的总添加量为20 wt%时,添加2 wt%的OMMT可以使PP体系的LOI值从29%升高到31.5%,并且通过垂直燃烧测试V-0级别。与此同时,热释放速率(HRR),总热释放量(THR)和CO2和CO的产生量均有不同程度的降低。利用SEM对PP体系炭层研究发现,OMMT的存在可以促使聚合物材料表面在燃烧过程中形成致密而强劲的炭层,同时起到隔绝热量、氧气和可燃性气体的溢出,从而致使PP/IFR/OMMT体系具有良好的阻燃性能。采用TGA来探讨PP及其协同阻燃体系的热降解行为,OMMT可以提升PP复合材料在高温区域的热稳定性,同时提高PP体系的最终残炭量。此外,我们还成功制备了含不同量Na-MMT的HCFA/Na-MMT纳米复合阻燃剂。将该纳米复合阻燃剂与聚磷酸铵(APP)通过熔融共混的方法混入到聚丙烯(PP)中,制备阻燃PP纳米复合材料。TGA结果表明剥离/插层的Na-MMT可以提高PP纳米复合材料在高温下的热稳定性,在促进保护性炭层的形成过程中发挥着重要的作用。此外,LOI,UL-94和Cone结果表明,当添加 20wt%的 IFR(APP:HCFA/Na-MMT 2%= 3:1),PP/APP/HCFA/Na-MMT纳米复合材料的LOI值最高,可达到31.5%,垂直燃烧测试可通过V-0等级,此外,与不含Na-MMT的PP/APP/HCFA相比,它的热释放速率的峰值(PHRR)和总热释放量(THR)都有明显的降低。PP/APP/HCFA/Na-MMT2%纳米复合材料的碳渣呈现膨胀的蜂窝状结构,可以有效的隔热隔氧,阻止可燃性气体的释放。5.在第3章中,HCFA表现出突出的成炭能力和良好的热稳定性,尤其是PA-HCFA的1%重量损失(T1%)下的热分解温度为468℃,预测它可以适用于一些加工温度更高的聚合物材料。因此,在本章节中,我们选用PA-HCFA和二乙基次磷酸铝(AlPi)复配制备阻燃玻纤增强PBT复合材料。研究GFPBT/AlPi/PA-HCFA复合材料的热稳定性发现,在600℃之前,炭渣具有极强的高温抗氧化能力和高的热稳定性。此外,GFPBT/AlPi/PA-HCFA复合材料的阻燃性能明显提高。燃烧实验结果表明GFPBT/AlPi/PA-HCFA(AlPi/PA-HCFA = 3/1)体系获得最高的LOI值,并能通过UL-94 V-0等级。阻燃性能的提高主要归功于燃烧过程中GFPBT基体表面上的炭层能够隔绝外界热量和氧气,起到保护内层基体的作用。这和TGA的结果相一致。此外,与纯的GFPBT相比,GFPBT/AlPi/PA-HCFA 复合材料(AlPi/PA-HCFA = 3/1)的 HRR 和 THR值明显降低。SEM测试进一步验证了该致密而紧凑的炭层存在可以减少燃烧期间可燃性气体和热量的传递,进而最终促使GFPBT/AlPi/PA-HCFA复合材料阻燃性能的提升。上述研究表明,PA-HCFA对聚合物基体在实际中的应用有很大的帮助。
[Abstract]:Nowadays, polymer materials are widely used in our daily life because of their excellent properties such as wear resistance, corrosion resistance, and electrical insulation. At the same time, they are well known for their flammability. The high flammability of polymer materials not only limits its further application and development, but also is extremely easy to fire and cause casualties and serious economic losses. Flame retardant technology and methods of common polymer materials (polypropylene and polybutylene terephthalate) are systematically reviewed in this paper. A series of phosphorus/nitrogen charring agents are prepared according to the molecular design, which have prominent char forming ability. These polymeric charring agents are used in flame retardant polypropylene materials. In addition, in order to solve the problem of poor water resistance of ammonium polyphosphate (APP), Microcapsulation Technology was introduced. Considering the advantages of nano-composite technology, a novel nano-composite flame retardant containing triazine polymerized charring agent (HCFAs) and stripped sodium-montmorillonite (Na-MMT) was prepared in one step. The thermal degradation and combustion characteristics of glass fiber reinforced polybutylene terephthalate (GFPBT) / HCFA / aluminum diethylene hypophosphite (AlPi) were studied. The main research progress of this paper includes the following parts. 1. A novel ring with high yield (86.5%) was synthesized by one-step method. Triphosphazene macromolecular charring agent (CPCFA) was introduced into polypropylene (PP) by melt blending with microcapsulated ammonium polyphosphate (MAPP) to prepare flame retardant PP. Compared with PP / MAPP, the LOI value of PP / MAPP / CPCFA system was obviously increased, and the vertical combustion (UL - 94) could reach V - 0 grade, and the corresponding thermal properties were also improved. The results show that the mixture of MAPP and CPCFA has a high flame retardant efficiency for PP. Thermogravimetric analysis shows that the presence of CPCFA can promote the formation of carbon layer and increase the residual carbon content of PP/MAPP/CPCFA in nitrogen and air. Finally, the water resistance test results show that the ratio of MAPP/CPCFA is 3:1 and 2:1. Polymer materials have excellent water resistance and can still reach UL-94 V-0 grade after 72 hours of hot water immersion. 2. In order to further improve the flame retardant efficiency and reduce its cost, a series of macromolecule charring agents based on triazine structure (HCFAs) were prepared and characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and water solubility test were used to evaluate the thermal stability and water resistance of HCFAs. The corresponding experimental results show that HCFAs have excellent thermal stability, outstanding char-forming ability and excellent hydrophobicity, and can be used as an efficient charring agent. PA-HCFA containing triazine and piperazine rings exhibited the best thermal stability and char-forming ability among these macromolecular carbonizers. A new intumescent flame retardant (IFR) composed of HCFAs and ammonium polyphosphate (APP) was prepared for flame retardant PP composites. TGA, LOI and vertical combustion were used. The thermal degradation, combustion behavior and water resistance of PP/IFR system were evaluated by UL-94, Cone and water resistance tests. TGA results in nitrogen and air showed that HCFA/APP could increase the carbon residue and thermal stability of PP/IFR. LOI and Cone results showed that the addition of IFR (APP/HCFAs) significantly improved the thermal stability of PP/IFR system. The introduction of IFR (APP/HCFA) was found to be beneficial to the formation of an expansive and dense carbon layer on the surface of the material during combustion, thus effectively preventing further degradation and combustion of the internal substrate. As the most important component of intumescent flame retardant (IFR), acid-source ammonium polyphosphate (APP) was modified by cyanuric chloride and piperazine to improve its water resistance. The modified ammonium polyphosphate (CFA-APP) was obtained by FTIR, EA, X-ray photoelectron spectroscopy (XPS) and SEM. The flame retardant PP was prepared by melt blending of CFA-APP with carbon-collector, acid-source and gas-source. The flame retardant properties of PP, PP/APP and PP/CFA-APP were studied by LOI, UL-94 and cone calorimeter (CC). The LOI value of PP/CFA-APP system increased to 34.5% when the content of CFA-APP was 25%, and it could pass the V-0 test of vertical combustion. CC results showed that CFA-APP had better flame retardancy than APP in PP matrix, including lower PHR value, FGI and CO release. The thermal degradation behavior of PP composites was evaluated by thermogravimetric analysis. Compared with unmodified PP, the thermal stability of CFA-APP and PP composites could be improved effectively by using triazine macromolecule charring agent as shell layer. The shell layer promoted the decomposition of PP and CFA-APP in advance, resulting in better thermal stability at high temperature. The digital photographs and SEM diagrams show that the PP/CFA-APP composite has a more compact and stable carbon layer during combustion than PP/APP. It is concluded that chemical modification of APP is an effective method to improve the flame retardancy and water resistance of PP composites. 4. An organic modified montmorillonite (OMMT) was selected as a synergistic flame retardant to prepare PP/IFR/OMMT composites with ammonium polyphosphate (APP) and triazine macromolecule charring agent (PA-HCFA). The experimental results show that when the total content of IFR and OMMT is 20%, the flame retardancy of PP system is obviously improved. When the total amount of flame retardant is 20 wt%, the LOI value of PP system can be increased from 29% to 31.5% by adding 2 wt% OMMT. At the same time, the heat release rate (HRR), total heat release (THR) and the production of CO2 and CO were all reduced to some extent. The carbon layer of PP system was studied by SEM. It was found that the presence of OMMT could promote the formation of a dense and strong carbon layer on the surface of the polymer material during combustion, and at the same time insulate the heat and oxygen. TGA was used to investigate the thermal degradation behavior of PP and its synergistic flame retardant system. OMMT could improve the thermal stability of PP composites in high temperature region and the final carbon content of PP system. In addition, Na-MM with different content was successfully prepared. HCFA/Na-MMT nanocomposite flame retardant T. The nanocomposite flame retardant and ammonium polyphosphate (APP) were blended into polypropylene (PP) by melt blending to prepare flame retardant PP nanocomposites. In addition, LOI, UL-94 and One results show that when 20 wt% IFR is added (APP: HCFA / Na-MMT 2% = 3:1), the LOI value of PP / APP / HCFA / Na-MMT nanocomposites is the highest, reaching 31.5%. Vertical combustion test can pass V-0 grade. In addition, compared with PP / APP / HCFA without Na-MMT, the peak heat release rate of PP / APP / HCFA can reach 31.5%. The carbon slag of PP/APP/HCFA/Na-MMT2% nanocomposites exhibits an expanded honeycomb structure, which can effectively insulate heat and oxygen and prevent the release of combustible gases. 5. In Chapter 3, HCFA shows outstanding char-forming ability and good thermal stability, especially 1% weight loss of PA-HCFA (T1% weight loss). Thermal decomposition temperature at 468 C is predicted to be suitable for some polymer materials with higher processing temperature. Therefore, in this chapter, we choose PA-HCFA and AlPi to prepare flame retardant glass fiber reinforced PBT composites. In addition, the flame retardancy of GFPBT/AlPi/PA-HCFA composites was significantly improved. The combustion experiment results showed that the highest LOI value was obtained in the GFPBT/AlPi/PA-HCFA (AlPi/PA-HCFA=3/1) system and the flame retardancy was improved by UL-94 V-0 grade. In addition, the HRR and THR values of GFPBT/AlPi/PA-HCFA composites (AlPi/PA-HCFA=3/1) were significantly lower than those of pure GFPBT. SEM test further confirmed that the existence of the compact carbon layer could be reduced. The flame retardancy of GFPBT/AlPi/PA-HCFA composites was improved by the transfer of combustible gases and heat during low combustion. The above studies show that PA-HCFA is very helpful to the practical application of polymer matrix.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ314.248

【相似文献】

相关期刊论文 前10条

1 尹亮;郝冬梅;林倬仕;陈涛;刘彦明;陈崇伟;徐静安;;三嗪齐聚物成炭剂合成的研究[J];塑料助剂;2010年02期

2 罗国菁;杨永兵;张伟;李锦春;陈强;;含硅成炭剂的合成及其在阻燃PP中的应用研究[J];中国塑料;2011年12期

3 郑剑波;游基飞;王彦林;;利用二甲基硅油副产物合成笼状有机硅阻燃成炭剂的研究[J];化学世界;2014年02期

4 袁丹丹;殷海青;任显诚;蔡绪福;;半芳香族聚酰胺成炭剂的合成与应用[J];四川大学学报(工程科学版);2012年01期

5 赵杰;秦军;解田;谢普;;不同成炭剂对阻燃复合材料的性能影响研究[J];塑料工业;2010年11期

6 王军;鲁成祥;任显诚;蔡绪福;;聚对苯二甲酰乙二胺成炭剂的制备及其应用[J];四川大学学报(工程科学版);2010年02期

7 唐霜;尹昌宇;赖学军;张海丽;李红强;曾幸荣;;三嗪类大分子成炭剂的合成及其在聚丙烯中应用[J];现代塑料加工应用;2012年04期

8 费国霞;刘渊;王琪;;改性酚醛成炭剂的制备及其在氢氧化镁/聚酰胺6阻燃体系中的协效阻燃作用[J];高分子学报;2011年10期

9 钱立军;许梦兰;马洋;王靖宇;许国志;;聚磷酸铵和三嗪成炭剂复合聚丙烯在水煮条件下的阻燃和力学性能[J];塑料工业;2014年02期

10 李旭;吴向阳;徐静安;尹亮;林倬仕;陈涛;郝冬梅;;三嗪类成炭剂的合成及对聚丙烯的阻燃[J];现代塑料加工应用;2009年02期

相关会议论文 前7条

1 尹亮;林倬仕;郝冬梅;陈涛;刘彦明;陈崇伟;王履新;;新型成炭剂的合成及其阻燃性能研究[A];2011年中国阻燃学术年会会议论文集[C];2011年

2 柯晨皓;方科益;陶慷;李娟;严庆;王玉忠;;三嗪类超支化成炭剂的合成及成炭行为[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年

3 夏科丹;职慧珍;杨锦飞;;三嗪类成炭剂的合成及其应用[A];2012年中国阻燃学术年会论文集[C];2012年

4 许苗军;李斌;;新型成炭剂对膨胀阻燃PP体系的阻燃及热降解行为研究[A];2005年全国阻燃学术年会论文集[C];2005年

5 叶文;许肖丽;郝冬梅;尹亮;林倬仕;王履新;;新型三嗪类成炭剂的合成及其对PP的阻燃性能研究[A];2013年全国阻燃学术年会会议论文集[C];2013年

6 许家友;李恺丹;刘杰;;一种阻燃玻纤增强聚丙烯的成炭剂-芳香族聚酰胺[A];2013年全国高分子学术论文报告会论文摘要集——主题M:阻燃高分子[C];2013年

7 柯晨皓;李娟;许亮;陶慷;;三嗪超支化成炭剂的制备及其在尼龙6中的应用[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年

相关博士学位论文 前1条

1 温攀月;新型成炭剂的设计及其阻燃聚合物材料的热稳定性和燃烧性能的研究[D];中国科学技术大学;2017年

相关硕士学位论文 前10条

1 刘存帅;三嗪类大分子高效成炭剂在PP中的应用[D];山东大学;2015年

2 马丽;含三嗪环和磷杂菲基团的新型成炭剂的合成及其在PP中的应用[D];太原理工大学;2016年

3 葛维娟;三嗪类超支化聚脲成炭剂的制备及在聚丙烯中的应用[D];太原理工大学;2016年

4 姜子维;聚磷酸铵包覆和高效成炭剂合成及其阻燃聚丙烯研究[D];华东理工大学;2016年

5 王远月;马来酸—赛克成炭剂的合成及其在聚丙烯阻燃中的应用研究[D];华东理工大学;2016年

6 刘梅芳;三聚氰胺磷酸盐/复合成炭剂阻燃聚烯烃的研究[D];四川大学;2007年

7 尹昌宇;三嗪成炭剂的合成及其与聚磷酸铵协同阻燃聚丙烯的研究[D];华南理工大学;2012年

8 刘克升;新型三嗪成炭剂的合成及无卤阻燃ABS的研究[D];东北林业大学;2008年

9 蔡翔;巯基三嗪成炭剂的合成及阻燃SBR的研究[D];华南理工大学;2012年

10 朱荧科;新型绿色成炭剂的制备以及成炭机理研究[D];宁波大学;2014年



本文编号:2210771

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2210771.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c1a4b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com