当前位置:主页 > 硕博论文 > 工程博士论文 >

单相长周期铋层状多铁材料的交换偏置效应

发布时间:2018-09-01 13:19
【摘要】:铋层状结构氧化物是一类由类萤石结构的(Bi202)2+和类钙钛矿结构的[Am-1BmO3m+1]2-(其中m为层数)单元沿c方向周期性排列的层状材料,由于其在室温以上同时具有铁电性和铁磁性,因而近年来备受关注。在铋层状结构氧化物中,Ti/Fe离子不均匀地占据类钙钛矿B位八面体中心,并与周围氧离子间形成强的相互作用;这种非中心对称结构以其离子间强的相互作用共同决定了它们特殊的铁电性和铁磁性,从而为人们研究和探索新型多铁材料提供了一条新的途径,并有望被应用到信息存储、传感器,甚至其它量子器件中。研究表明,铋层状结构氧化物的多铁性能与其周期长短有关。短周期的氧化物(如4层的Bi5FeTi3O1 5层的Bi6Fe2Ti3O18和6层的Bi7Fe3Ti3O21)在室温下一般表现出顺磁性,而长周期的氧化物(如7层的BigFe4Ti3O24和8层的Bi9Fe5Ti3O27)在室温下通常表现为反铁磁性,有时候甚至会出现弱的铁磁性。长周期氧化物这种独特的铁磁和反铁磁的共存现象以及可能存在的相互作用,将会使长周期氧化物在一定温度下呈现玻璃态,甚至可能引发交换偏置现象,成为一种新的交换偏置材料。本论文以进一步研究和探索铋层状结构氧化物的新颖多铁性能和机理为目标,主要进行以下研究,包括:1)Co/Y共掺杂Bi7Fe3Ti3O21材料的制备及性能关系研究;2)长周期Bi10Fe6Ti3O30氧化物的制备、结构和变温多铁性能关系研究,探讨可能的交换偏置现象;3)Co掺杂Bi10Fe6Ti3O30的结构性能研究及性能影响关系。论文主要结果如下:第一章:分别介绍了铁电材料和磁性材料,给出了磁性材料中各种磁性的分类;并介绍了同时具有铁电性能和磁学性能的多铁材料的特性及应用领域。本论文的工作以在室温下同时具有铁电性和铁磁性的单相奥里维里斯(Aurivillius)结构铋层状氧化物为关注焦点,分析了铋层状氧化物的结构特点和性能关系,确立了本论文的研究方向,即:优化掺杂Aurivillius结构材料的制备并探讨掺杂含量对其铁电和铁磁等多铁行为的改性研究;长周期铋层状氧化物的新型交换偏置效应及其与掺杂元素间的关系。第二章:采用改进的燃烧法制备奥里维里斯(Aurivillius)相铋层状氧化物。本工作改进了传统的以固相反应法制备铋层状氧化物的工艺,采用改进的燃烧法制备氧化物粉体,并进一步通过马弗炉烧结或者热压烧结得到陶瓷样品。由于Aurivillius相铋层状氧化物的结构比较复杂,稳定性较低,制备条件窗口较小,因此本工作选择了短周期的Bi7Ti3Fe3O21进行探索性制备;并进而探讨Co、Y共掺杂时钇的掺杂量的改变对材料的多铁性能的影响关系。实验结果证明,钴加入之后,会与铁通过周围的氧离子形成耦合,从而大幅增强了材料的铁磁性能。另外,具有4d空轨道且半径更小的钇的加入也同时提高了材料的铁电性能和铁磁性能。磁失重测试结果表明,在一定量的Y掺杂范围内,材料的多铁行为主要来自于本征性能。第三章:介绍了一种通常产生在两种磁性材料界面处的耦合相互作用,即交换偏置效应,并分析了交换偏置效应与材料体系组成和结构间的相互关系,提出了发展新型单相长周期交换偏置材料的新构想。交换偏置效应的发现对于自旋电子学的基础研究和应用发展起到了非常重要的作用。交换偏置现象通常出现在:1)同时包含有铁磁和反铁磁组分的体系中;2)目前也拓展到一些多铁的异质结体系。在这类多铁异质结体系中,由于存在磁电耦合效应,因此其交换偏置效应不仅可以通过磁场来调控,还可以通过电场来调控,因而具有更大的调控自由度;3)空穴掺杂型的锰氧化物和钴氧化物等,由于材料中存在着结构相分离和电子相分离现象,因此往往形成几种不同的相共存体系(包括铁磁和反铁磁相的共存),这种内在相分离产生的交换偏置效应为我们探索单相的交换偏置材料提供了可能性。由于影响交换偏置场的因素非常复杂,因此现有的理论模型均不能很清晰、全面的解释实验中观测到现象。第四章:发现了一种具有显著交换偏置效应的单相长周期铋层状氧化物多铁材料Bi10Fe6Ti3O30。在通过扫描透射电子显微镜的高角环形暗场相(STEM-HAADF)等实验手段直接观测到了这种长周期的氧化物中磁性铁离子的不均匀分布现象,证实了短周期磁有序性的存在,即团簇玻璃态和自旋倾斜反铁磁。研究结果表明反铁磁自旋和团簇玻璃态之间的相互作用受到温度的影响,并在合适的温度下会出现交换偏置现象。该样品的交换偏置场远高于相分离体系和多铁异质结体系的一些材料的交换偏置场。这种具有显著的交换偏置效应的新的单相层状多铁材料的发现,不仅有利于基础物理研究的发展,更是推动了交换偏置器件应用的步伐。第五章:通过改性手段,对单相长周期铋层状氧化物多铁材料Bi10Fe6Ti3O30进行B位钴掺杂的尝试制备以及多铁性和相关性能的研究。实验结果表明材料的磁性受掺杂Co的含量影响很大。当样品中只含有Fe元素时,样品随着温度的不同通常表现出顺磁性或反铁磁性。而随着Co含量的增加,样品体现出由顺磁向铁磁性能演变。这主要是由于在长周期结构的氧化物中,类钙钛矿单元中Fe和Co位置的选择更多,可能会出现不同的结合状态,因此比较容易捕捉到磁性的演变过程。对于这类材料,它们独特的非中心对称结构和氧八面体中心Ti、Fe、Co的不均匀分布,以及与周围氧离子之间的强烈的相互作用,是其奇特的铁电性能和铁磁性能的主要来源。第六章:全文内容的总结以及对未来工作的展望。
[Abstract]:Bismuth layered oxides are a class of fluorite-like (Bi202)2+ and perovskite-like (Am-1BmO3m+1]2-(in which m is the number of layers) layered materials with periodic alignment along the C direction. Ti/Fe ions are not found in bismuth layered oxides due to their ferroelectric and ferromagnetic properties above room temperature. The perovskite-like B-site octahedron occupies the center of perovskite-like octahedron evenly and forms a strong interaction with the surrounding oxygen ions. This kind of non-central symmetric structure determines their special ferroelectricity and ferromagnetism by the strong interaction between ions, which provides a new way for people to study and explore new Polyferrous materials and is expected to be used. Studies have shown that the polyferric properties of bismuth layered oxides depend on the period length. Short-period oxides (such as 4-layer Bi5FeTi3O1 5-layer Bi6Fe2Ti3O18 and 6-layer Bi7Fe3Ti3O1) generally exhibit paramagnetism at room temperature, while long-period oxides (such as 7-layer BigFe) exhibit paramagnetism. 4Ti3O2 4 and 8-layer Bi9Fe5Ti3O2 7) usually exhibit antiferromagnetism at room temperature, sometimes even weak ferromagnetism. Long-period oxides, a unique coexistence of ferromagnetism and antiferromagnetism, and possible interactions, will make long-period oxides present glass state at a certain temperature and may even cause exchange bias. In order to further study and explore the novel multi-ferrous properties and mechanism of bismuth layered oxides, the following studies have been carried out: 1) preparation of Co/Y co-doped Bi_7Fe_3Ti_3O_2_1 and its performance relationship; 2) preparation, structure and properties of long-period Bi_ 10Fe_ 6Ti_ 3O_ 30 oxide. The main results of this paper are as follows: Chapter 1: Ferroelectric and magnetic materials are introduced separately, and the classification of various magnetism in magnetic materials is given; and the ferroelectric properties of Bi10Fe6Ti3O30 doped with Co are also introduced. In this paper, the structure and properties of bismuth layered oxides with ferroelectric and ferromagnetic properties at room temperature are analyzed, and the research direction of this paper is established. The preparation of chemically doped Aurivillius structural materials and the modification of their ferroelectric and ferromagnetic properties by doping content were investigated; the new exchange bias effect of long-period bismuth layered oxides and its relationship with doping elements were investigated. The traditional method of preparing bismuth layered oxides by solid-state reaction was improved. Oxide powders were prepared by improved combustion method, and ceramic samples were obtained by muffle furnace sintering or hot-pressing sintering. In this work, short period Bi7Ti3Fe3O2 1 was selected for exploratory preparation, and the effect of yttrium doping on the multi-ferromagnetic properties of the materials was discussed. The experimental results show that the ferromagnetic properties of the materials are greatly enhanced by the coupling of cobalt with iron through the surrounding oxygen ions. The addition of Yttrium with smaller radius and d-empty orbits also improves the ferroelectric and ferromagnetic properties of the materials. The results of magnetic weightlessness measurements show that in a certain range of Y-doping, the multi-ferroelectric behavior of the materials mainly comes from the intrinsic properties. Chapter 3: A coupling interaction between two kinds of magnetic materials is introduced. The exchange bias effect and the relationship between the exchange bias effect and the composition and structure of the material system are analyzed. A new idea for developing new single-phase long-period exchange bias materials is proposed. It appears as follows: 1) in systems containing both ferromagnetic and antiferromagnetic components; 2) at present, it is also extended to some multi-ferromagnetic heterojunction systems. 3) Hole-doped manganese oxides and cobalt oxides, due to the existence of structural phase separation and electronic phase separation, often form several different phase coexistence systems (including the coexistence of ferromagnetic and antiferromagnetic phases), the exchange bias effect produced by this internal phase separation for us to explore the exchange of single phase. Biased materials provide possibilities. Due to the complexity of the factors affecting the exchange bias field, the existing theoretical models are not clear enough to fully explain the phenomena observed in the experiments. The inhomogeneous distribution of magnetic iron ions in such long period oxides has been observed directly by means of high angle ring dark field phase (STEM-HAADF) and other experimental means of TEM, which confirms the existence of short period magnetic ordering, i.e. cluster glass state and spin-tilted antiferromagnetism. The exchange bias field of the sample is much higher than that of some materials in the phase separation system and the multiferrous heterojunction system. The discovery of a new single-phase layered multiferrous material with significant exchange bias effect is not only advantageous. The development of basic physics has promoted the application of exchange bias devices. Chapter 5: Trial preparation of B-site cobalt-doped Bi10Fe6Ti3O30, a single-phase long-period bismuth layered oxide polyferric material, by means of modification, and the study of its polyferricity and related properties have been carried out. When only Fe is present in the samples, the samples usually exhibit paramagnetism or antiferromagnetism at different temperatures. With the increase of Co content, the samples exhibit paramagnetism to ferromagnetism. This is mainly due to the fact that the positions of Fe and CO in perovskite-like units are more selective in oxides with long-period structure. For these materials, their unique noncentrosymmetric structure and the inhomogeneous distribution of Ti, Fe, Co at the center of the oxygen octahedron, as well as the strong interaction with the surrounding oxygen ions, are the main sources of their unique ferroelectric and ferromagnetic properties. Chapter: summary of the full text and prospects for future work.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O611

【相似文献】

相关期刊论文 前10条

1 缪明明,,廖代正,姜宗慧,王耕霖;具有强反铁磁相互作用的线性三核铜(Ⅱ)配合物的合成与磁性[J];高等学校化学学报;1995年02期

2 黄海林;丁林杰;孙照宇;;铁磁—反铁磁—反铁磁三聚自旋链的磁化特性[J];武汉工业学院学报;2013年04期

3 张勇,韩梅,魏国柱;层内铁磁-层间反铁磁双层系统零温性质[J];南京化工大学学报(自然科学版);2001年04期

4 王茂华;许小勇;胡经国;;铁磁/反铁磁双层膜中的磁化性质与界面微结构[J];功能材料与器件学报;2009年06期

5 王奇,吴中,王利强;反铁磁晶体表面上的非线性电磁波[J];中国科学(A辑);1998年12期

6 王治国,任煜;交错相互作用反铁磁链的临界区域[J];周口师范高等专科学校学报;1999年02期

7 戴守愚,黄锡成,G.Filoti;钴吸附对α-Fe_2O_3Morin相变的影响[J];科学通报;1985年03期

8 代波;蔡健旺;赖武彦;;界面掺杂FeMn对CoFe/CrPt交换偏置体系的影响[J];功能材料;2007年05期

9 代波;雷勇;邵晓萍;倪经;;Mn成分对CoFe/Pt_(50)(Cr_(100-x)Mn_x)_(50)体系交换偏置的影响[J];功能材料;2010年01期

10 潘旋;周广宏;朱雨富;韦军;;基于NiMn的铁磁/反铁磁系统中交换偏置研究进展[J];功能材料;2013年18期

相关会议论文 前6条

1 周仕明;;铁磁/反铁磁交换偏置中一些问题的研究[A];第四届全国磁性薄膜与纳米磁学会议论文集[C];2004年

2 宋涛;朱士群;郝翔;;反铁磁开链两端量子态信息的交换[A];第十七届十三省(市)光学学术年会暨“五省一市光学联合年会”论文集[C];2008年

3 吕树臣;;磁性—非磁性超晶格与反铁磁—非磁超晶格的反射和透射[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年

4 王修光;刘忠义;杨恩翠;赵小军;;一个可逆的蓝色变磁骨架到粉色反铁磁有序层的单晶到单晶的转变[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年

5 林勤;陆果;刘尊孝;张玉芬;;(GdSm)_(1.85)Ce_(0.15)CuO_4的超导和反铁磁有序[A];首届中国功能材料及其应用学术会议论文集[C];1992年

6 黄一枝;吴立明;;RE_4O_4Se_3(RE=Gd、Tb、Dy)中几何失措的抑制与长程反铁磁有序[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年

相关博士学位论文 前10条

1 黄妍;单相长周期铋层状多铁材料的交换偏置效应[D];中国科学技术大学;2015年

2 白宇浩;铁磁/反铁磁体系中交换偏置的角度依赖关系及其阶跃现象[D];内蒙古大学;2010年

3 周胜;反铁磁/电介质体系磁光学非线性研究[D];哈尔滨理工大学;2010年

4 刘洋;铁磁—反铁磁薄膜中的耦合和输运行为研究[D];北京科技大学;2015年

5 白晶;反铁磁体系三阶非线性效应理论研究[D];哈尔滨理工大学;2011年

6 何惊华;铁氧体基复合系统磁性及交换偏置[D];华中科技大学;2009年

7 詹晓芝;无序系统中交换偏置效应的研究[D];华南理工大学;2014年

8 刘奎立;过渡金属掺杂氧化物的磁性和交换偏置效应研究[D];华中科技大学;2010年

9 徐建清;磁性多层薄膜中电流诱导的磁化翻转与振荡[D];南京大学;2012年

10 高铁仁;垂直磁记录介质的制备及物性研究[D];复旦大学;2006年

相关硕士学位论文 前10条

1 张华;反铁磁耦合三层膜体系磁化反转过程的微磁学模拟[D];四川师范大学;2015年

2 任泽国;钻石链上反铁磁Spin-1/2 Ising模型的精确解[D];曲阜师范大学;2015年

3 楚海港;具有合成反铁磁结构的L1_0FePt基垂直交换耦合复合薄膜的研究[D];复旦大学;2014年

4 吴国贞;辅助铁磁层对铁磁/反铁磁双层膜中交换偏置的影响[D];东北大学;2013年

5 曹永哲;磁场中A类反铁磁模型的热纠缠[D];延边大学;2007年

6 范志超;垂直外场中反铁磁三明治结构的二次谐波效应[D];哈尔滨师范大学;2013年

7 高欣华;反铁磁三明治结构的二次谐波生成[D];哈尔滨师范大学;2009年

8 杨苏扬;铁磁/反铁磁图纹结构的制备及交换偏置效应的研究[D];吉林师范大学;2012年

9 樊维佳;铁磁/反铁磁双层膜中交换偏置效应的研究[D];复旦大学;2009年

10 张娟;带反铁磁层复合结构丝的制备和磁性研究[D];华东师范大学;2011年



本文编号:2217323

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2217323.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4ace1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com