相变微胶囊储能过程传热与流动特性研究
[Abstract]:With the rapid development of global industry and economy, more and more countries are demanding energy, the consumption of traditional non-renewable energy such as coal and oil is increasing, energy shortage and environmental pollution are becoming increasingly serious. Therefore, it is urgent to save energy, reduce emissions and improve energy efficiency. Phase change microcapsules can be prepared by encapsulating phase change energy storage materials with microcapsule technology. However, most of the core materials of phase change microcapsules are organic phase change materials, such as paraffin wax. Their thermal conductivity is generally low, resulting in low thermal energy storage and transport efficiency, which limits the practical application of phase change energy storage technology. The main research contents and conclusions are as follows: (1) Paraffin/melamine resin was prepared by using nano-copper, graphene and expanded graphite as high thermal conductive materials. The heat transfer enhancement of phase change microcapsules was studied, and the effects of the kinds and mass fraction of high thermal conductivity materials on the thermal properties and heat storage/release properties of phase change microcapsules were analyzed. The results showed that the thermal conductivity of phase change microcapsules increased by 8.72%, 28.27% and 39.62% respectively when the contents of nano-copper, graphene and expanded graphite were 2.5 wt%. When the content of expanded graphite was 2.5 wt.%, the thermal storage and release efficiency of expanded graphite / micro EPCM composites were 14.98% and 26.63% higher than that of phase change microcapsules, respectively. (2) Phase change microcapsule suspensions with different mass fractions of microcapsules were prepared as latent functional thermal fluids, and their thermophysical properties and heat transfer and flow characteristics in tubes were studied. The density and thermal conductivity of the fluid decrease with the increase of the content of phase change microcapsules, while the latent heat increases with the increase of the mass fraction of phase change microcapsules. The results show that the convective heat transfer coefficient of latent functional heat fluids increases with the increase of the content of phase change microcapsules. When the content of phase change microcapsules is 5 wt.% and 10 wt.%, the convective heat transfer system is established. The number is about 2 times and 3 times that of the base solution. (3) with seven hydrated Magnesium Sulfate as core material and urea formaldehyde resin as wall material, phase change microcapsules were prepared by emulsion polymerization. The micromorphology and physical parameters of phase change microcapsules prepared under different technological conditions were studied. When the content of emulsifier was 0.5 g, the microcapsules showed regular spherical structure, smooth and compact surface, and the particle size was relatively uniform. At this time, the average diameter of microcapsules was 34.99 micron, and the coating rate was 36.5%. (4) Sodium thiosulfate pentahydrate was used as core material, polystyrene as wall material, and solvent evaporation method was used to prepare microcapsules. The phase change microcapsules were prepared. The morphology and thermal stability of the microcapsules prepared under different emulsifier content and stirring rate were analyzed. The results showed that the phase change microcapsules had regular spherical structure and smooth and compact surface. With the increase of emulsifier content, the phase transition temperature of microcapsules decreases, while the latent heat of microcapsules increases first and then decreases with the increase of emulsifier content. 4%. (5) Phase change microcapsules were prepared by sol-gel method with sodium thiosulfate pentahydrate as core material and silica as wall material. When the mass ratio of core material, wall material and emulsifier is 1:0.4:0.04, the phase change microcapsules have regular spherical structure, smooth and compact surface, and most uniform particle size distribution. The latent heat of phase change increases gradually. The maximum latent heat of phase change microcapsules is 199.47kJ/kg and the coating rate is 94.65%. The supercooling and thermal conductivity of sodium thiosulfate pentahydrate coated with silica are improved, and the thermal stability is also improved obviously. The leakage problem caused by the flow of core material after melting is solved, thus the coating rate is prolonged. In summary, this paper focuses on the enhanced heat transfer of phase change microcapsules, the flow and heat transfer of latent functional heat fluids, the preparation and thermophysical properties analysis of phase change microcapsules of inorganic hydrate salts. It has a certain reference value in strengthening the preparation of new inorganic salt phase change microcapsule materials.
【学位授予单位】:中国矿业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TK124
【相似文献】
相关期刊论文 前10条
1 吴嘉峰;郝英立;施明恒;;相变微胶囊功能流体融化状态的数值模拟[J];工程热物理学报;2007年05期
2 鲁进利;郝英立;;单个相变微胶囊在湍流中的运动与融化特性[J];热科学与技术;2007年04期
3 马保国;金磊;蹇守卫;;石蜡相变微胶囊的制备及在建材中的应用[J];建材世界;2009年01期
4 杨骁博;袁卫星;姜军;;不同温区相变微胶囊的制备及研究进展[J];制冷;2009年04期
5 李凤志;吴成云;李毅;;相变微胶囊半径及含量对织物热湿性能影响数值研究[J];应用基础与工程科学学报;2008年05期
6 李凤志;朱云飞;王鹏飞;曹业玲;;织物-多种相变微胶囊复合材料热特性数值模拟[J];南京航空航天大学学报;2009年04期
7 陈斌娇;王馨;曾若浪;张寅平;狄洪发;;相变微胶囊悬浮液层流强迫对流换热实验研究[J];太阳能学报;2009年08期
8 吴嘉峰;郝英立;施明恒;;相变微胶囊功能流体相变区间的影响因素和变化趋势分析[J];热科学与技术;2006年04期
9 ;相变微胶囊材料制造技术[J];军民两用技术与产品;2013年03期
10 郑兴华;邱琳;祝捷;苏国萍;唐大伟;;相变微胶囊的热导率测量[J];工程热物理学报;2012年03期
相关会议论文 前6条
1 闵洁;寿晨燕;朱泉;潘建君;;相变微胶囊的制备及其相变性能的研究[A];第一届广东纺织助剂行业年会论文集[C];2009年
2 曾若浪;陈斌娇;王馨;张寅平;王懿;狄洪发;;相变微胶囊及其悬浮液的两种潜热测量方法[A];制冷空调新技术进展——第四届全国制冷空调新技术研讨会论文集[C];2006年
3 任晓亮;任丽;王立新;;环保节能型相变微胶囊的制备及应用[A];2004年中国材料研讨会论文摘要集[C];2004年
4 叶星;陈艳;陈大柱;;耐黄变聚脲包覆正十八烷相变微胶囊的制备和储热性能[A];2012年全国高分子材料科学与工程研讨会学术论文集(下册)[C];2012年
5 任晓亮;王立新;任丽;;聚脲型相变微胶囊的制备[A];2004年材料科学与工程新进展[C];2004年
6 陈艳;欧阳星;叶星;陈雪飞;张海玲;陈大柱;;环氧树脂/相变微胶囊/CNT复合材料的制备及动态力学性能[A];2013年全国高分子学术论文报告会论文摘要集——主题J:高分子复合体系[C];2013年
相关博士学位论文 前1条
1 刘臣臻;相变微胶囊储能过程传热与流动特性研究[D];中国矿业大学;2017年
相关硕士学位论文 前10条
1 张健;潜热型功能流体储热特性实验与数值模拟研究[D];中国科学院研究生院(工程热物理研究所);2015年
2 刘钦矿;三聚氰胺改性脲醛树脂相变微胶囊的制备及性能分析[D];上海应用技术学院;2015年
3 贺珊珊;密胺树脂及聚脲壁材相变微胶囊的制备与表征[D];哈尔滨工业大学;2015年
4 李婷婷;单分散Bi-Ga相变微胶囊制备及热循环稳定性[D];大连理工大学;2015年
5 于佳利;添加相变微胶囊复合工质的传热性能研究[D];石家庄铁道大学;2015年
6 彭佩;聚脲相变微胶囊的制备及其应用性能研究[D];东华大学;2016年
7 楼樱红;溶胶—凝胶法制备相变微胶囊及其在织物上的应用[D];东华大学;2013年
8 惠龙;导热增强型相变微胶囊的制备与应用[D];东南大学;2015年
9 李俊;微流控技术制备相变微胶囊的研究[D];广东工业大学;2016年
10 史汝琨;基于相变微胶囊涂层的智能调温织物的制备与性能研究[D];天津工业大学;2016年
,本文编号:2218533
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2218533.html