航空难加工材料螺旋铣制孔专用刀具设计及其质量研究
[Abstract]:The combination of spiral milling and industrial robot can realize efficient drilling under dry cutting condition, and it has obvious advantages over traditional drilling in improving machining quality and reducing production cost. However, because of the special physical and chemical properties and poor cutting performance, it is very challenging to improve the quality of helical milling holes, to avoid exit defects and to restrain tool wear. In this paper, based on the kinematic characteristics of spiral milling, a special cutting tool chip structure is designed, and the mechanical theory of cutting process is analyzed in depth. Aiming at titanium alloy (TC4-DT), carbon fiber reinforced composites (CFRP) and CFRP/Ti laminated materials, To carry out systematic experimental research. Firstly, this paper introduces the research status of helical milling technology and its cutting tools, analyzes the quality problems in drilling process, and points out the advantages of helical milling process. Based on the kinematics analysis of spiral milling, the kinematics equation is constructed, the key kinematics vector is described, and the motion trajectory is simulated and analyzed by MATLAB. The characteristics of cutting range and its relationship with rotation / rotation speed ratio (R1) and diameter ratio of aperture to tool diameter (R2) are determined. The design scheme of special tool for spiral milling hole is put forward. This paper introduces the structural characteristics of segmented end edge, spiral side edge and cooling hole on the back of teeth, with emphasis on the simulation design scheme of split end edge chip structure, four teeth same structure and two symmetrical same structure. Based on the simulation results of non-deformable chip and machined surface topography obtained from different schemes, the end edge structure optimization and mathematical description of special tool are realized, and the trajectory characteristics of the optimized edge and its key points are analyzed. By synthesizing the influence of R _ 1 / R _ 2 on the trajectory morphology, the effects of various parameters on the simulation results of undeformed chips are further studied, and the chip geometry, cutting force and hole quality produced by different parameters are used to verify the chip-splitting effect of special cutting tools. A nonlinear cutting force model is constructed for the special tool for screw milling hole making. By establishing a coordinate system to describe the cutting quantity, the cutting width and chip thickness produced by different cutter teeth during the semi-rotation period of stable machining are described and numerically calculated, and the average force model is used to calculate the thickness of chip and the cutting width. The calibration test of cutting force coefficient is carried out, and the coefficient is linear fitted and calculated. Finally, the TC4-DT spiral milling experiment is carried out to verify the cutting force model. The changing law of cutting force under different machining parameters is also analyzed in depth. Based on the special tool for helical milling hole making, the systematic experimental study was carried out on the aviation difficult materials (TC4-DT,CFRP and CFRP/Ti laminated materials). By analyzing the geometric characteristics of chip, the changing trend of cutting force and the changing rule of hole making quality under different parameters, the parameter optimization of single layer TC4-DT,CFRP plate helical milling process is realized. Furthermore, the characteristics of tool wear and its influence on cutting force and hole making quality are expounded, and the accuracy of helical milling of CFRP/Ti laminated material is studied, and the variation law of average aperture and roundness of TC4-DT and CFRP is expounded. Furthermore, the chip splitting advantage of special cutting tools is verified. Finally, this paper summarizes the main research content, refines the innovation, and puts forward the prospect to the future research work.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG54
【相似文献】
相关期刊论文 前10条
1 李蓓雄;介绍在普通镗床上镗制孔的正确中心距离[J];机械;1952年12期
2 范信江;;不同硬度材料结合面制孔方法[J];机械工程师;2012年07期
3 王志儒;;制孔钳[J];机械工人.冷加工;1989年11期
4 夏伯雄;;多主轴高速制孔[J];装备机械;2004年01期
5 耿狄,邓剑平;绞制孔开槽工具的探讨[J];西部粮油科技;1998年01期
6 李亚宏;宁保国;张艳肖;;大型机加件自动制孔技术的研究[J];装备制造技术;2014年01期
7 明伟伟;王昌赢;魏莹莹;安庆龙;陈明;;纤维增强复合材料制孔刀具技术研究进展[J];航空制造技术;2013年14期
8 罗和平;刘春时;李焱;林剑锋;闫海;张传思;;多功能制孔执行器的研制[J];机械设计与制造;2010年08期
9 夏伯雄,叶红;多主轴高速制孔[J];机械;2004年S1期
10 李茂江,,张玉本;桥梁制孔用全胶软管的研制[J];特种橡胶制品;1995年06期
相关会议论文 前6条
1 董登科;王俊扬;;紧固孔原始疲劳质量控制与制孔技术研究[A];第八届全国结构工程学术会议论文集(第Ⅱ卷)[C];1999年
2 肖望东;王声;王宏明;;于MBD技术飞整体薄壁加件制孔技术的应用[A];全面建成小康社会与中国航空发展——2013首届中国航空科学技术大会论文集[C];2013年
3 雷云;陈伟涛;;郑州黄河桥钢桁梁主桁杆件制孔精度控制[A];2014年全国钢结构设计与施工学术会议论文集[C];2014年
4 姚英学;李德溥;袁哲俊;;颗粒增强金属基复合材料加工技术进展[A];2005年惯性器件材料与工艺学术研讨暨技术交流会论文摘要集[C];2005年
5 陈远龙;徐必超;袁根福;姚燕生;梁华琪;;难加工材料激光化学复合加工技术的现状与进展[A];2007年中国机械工程学会年会论文集[C];2007年
6 陈远龙;徐必超;袁根福;姚燕生;梁华琪;;难加工材料激光化学复合加工技术的现状与进展[A];2007年中国机械工程学会年会之第12届全国特种加工学术会议论文集[C];2007年
相关重要报纸文章 前2条
1 本报通讯员 白晓燕;技术管理:向国际一流水平看齐[N];中国航空报;2011年
2 汤凤;亚洲最大的宇航及汽车专用刀具生产基地落户大连[N];中国高新技术产业导报;2007年
相关博士学位论文 前5条
1 周兰;航空难加工材料螺旋铣制孔专用刀具设计及其质量研究[D];浙江大学;2017年
2 温泉;C/E复合材料制孔损伤形成机理与评价方法研究[D];大连理工大学;2014年
3 王奔;切削力和热对C/E复合材料制孔损伤的影响机理[D];大连理工大学;2014年
4 徐林红;难加工材料可加工性分析方法的研究[D];武汉理工大学;2010年
5 殷宝麟;振动攻丝机理及典型难加工材料小孔振动攻丝试验研究[D];哈尔滨工业大学;2008年
相关硕士学位论文 前10条
1 江一行;环形轨自动化制孔系统开发及其定位精度分析[D];浙江大学;2014年
2 涂国娇;环形轨自动化制孔系统孔位修正方法研究[D];浙江大学;2015年
3 孟祥磊;基于气垫运输的活动翼面制孔系统设计研究[D];浙江大学;2015年
4 吴原骅;面向自动化制孔的飞机叠层结构预连接工艺优化[D];浙江大学;2015年
5 陈昌添;自动制孔机器人刀具关节自适应控制方法研究[D];南昌航空大学;2015年
6 金超宁;自动制孔系统的智能设计方法研究[D];南昌航空大学;2015年
7 李聪;面向机器人自动化叠层制孔过程的压紧力优化[D];浙江大学;2016年
8 张阿龙;大型飞机机身环形对接区高效精确制孔技术[D];浙江大学;2016年
9 罗W
本文编号:2270455
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2270455.html