介孔有机硅杂化纳米材料的设计合成与性质研究
[Abstract]:Since its synthesis in 1992, mesoporous silica material has been a hot spot for scientists. The mesoporous silica nano-materials have been widely applied to different fields of scientific research because of its nano-scale, unique pore structure and better stability. The mesoporous organic silicon hetero-nano material has the dual functions of organic materials and inorganic mesoporous materials, such as higher specific surface area, larger pore size, uniform adjustable pore size, easy-to-modify inner/ outer surfaces and uniform distribution of organic and inorganic components on the whole framework and the like, and has wide application prospect in the fields of biomedicine, dye loading and release, catalysis and the like. This paper mainly focuses on the design and synthesis of a novel mesoporous organosilicone heterogenous nano-material, which is designed and synthesized with two different synthetic strategies. The method comprises the following steps of: designing a mesoporous organic silicon oxide nano material with different symmetry and different pore channel structures by using a simple ethyl group bridging organic silicon precursor; and II, jointly hydrolyzing and polymerizing a silicon precursor containing an amino group and a hydroxyl group and an inorganic silicon precursor, Organic functionalized mesoporous silica nano-materials with different morphology are designed and synthesized. The thesis mainly gains the following research results: 1. A simple and controllable symmetric/ asymmetric coating method is designed. By using the core-shell structure of the Au@SiO_2 nanoparticles as seeds, the periodic mesoporous organic silicon oxide (PMO) nanostructures with different morphologies are prepared, including the AuPMO of the asymmetric (Janus) structure. The Au@PMO of egg yolk-shell structure and the Au@PMO/ m SiO _ 2 nanoparticles of yolk-double shell structure. During the reaction process, ammonia water is first used as an alkaline catalyst to promote the hydrolysis and polymerization of the organic silicon precursor, and then the ammonia water is used as an etching agent to selectively dissolve the SiO2 shell in the Au@SiO_2 nano-particles to form a hollow nano structure. The obtained three kinds of nano-particles have higher specific surface area, larger pore volume and adjustable cavity structure. In addition, the prepared AuPMO and Au@PMO nanoparticles showed good catalytic activity for the decomposition of hydrogen peroxide and reduction of 4-nitrophenols. Due to the unique nanostructure and the composition of the organic-inorganic composite, the PMO and hollow PMO nanoparticles of the Janus structure all exhibit extremely low hemolysis activity, and provide the potential for further application of the mesoporous organic silicon oxide nano-materials in the biological medicine field. By adjusting the volume fraction of ethanol in the reaction system, the transformation of the mesoporous organic silicon oxide nanoparticles from the single mesoporous to the dimesopore structure is achieved by adjusting the volume fraction of ethanol in the reaction system. The double-dielectric porous organic silicon oxide nanoparticles of the core-shell structure have smaller dielectric holes (4.0 nm) on the shell, and have petal-shaped larger dielectric holes (46 nm) in the core. Due to the unique multi-stage dielectric hole structure, the double-porous organic silicon oxide nanoparticles exhibit higher loading and slower release speed in the application of object loading. This is mainly because the large dielectric holes on the inner core can provide large storage space for guest molecules, while smaller dielectric holes on the shell serve as natural valves so that guest molecules stored inside can be released slowly. Moreover, both single and dimesopore organic silicon oxide nanoparticles exhibited lower cytotoxicity and good cell infiltrations. In this paper, a simple and universal method of germination growth is designed, which successfully synthesizes the mesoporous silica nanoparticles with an organic-inorganic composite structure. In the whole synthesis process, periodic mesoporous organic silicon oxide (PMO) nanoparticles were used as seeds, and mesoporous silica (SiO _ 2) was used as a branch to grow on the surface of PMO nanoparticles. The length and quantity of SiO _ 2 branch in Janus mesoporous silica nano-particles can be well controlled by the addition of the inorganic silicon source n-ethyl silicate in the simple regulation reaction system. In addition, the different regions of the Janus mesoporous silica nanoparticles are easily functionalized with different organic groups, the PMO nanoparticles can be modified with amino groups (-NH _ 2), and the sulfonic acid groups (-SO _ 3H) are modified on the SiO _ 2 branch. Janus mesoporous silica nanoparticles with acid-base double catalytic activity are designed in this way. Further catalytic experiments also show that the double functionalized Janus mesoporous silica nanoparticles exhibit excellent catalytic activity in the acid-base deprotected Henry series reaction. By using the simple egg yolk-shell structure nanoparticles as the matrix, it is successfully designed to synthesize the garnet-shaped mesoporous silica nanoparticles, which is composed of a plurality of metal cores and a mesoporous silicon oxide shell of a functionalized poly-silicon group. different kinds of metal nanoparticles (Pd, Pt, Au) can be successfully embedded as the core in the garnet-like nano-structure, and the hydroxyl groups on the shell can be easily oxidized to acidic sulfonic acid groups. Different from the simple yolk-shell structure, the garnet-like nanoparticles have their unique structure and chemical composition, can be used as the nano-reactors, and show good double-functional catalytic activity and cyclic stability in the series reaction of the synthesized heteropoly acid derivatives. In addition, the core and the outer shell in the pomegranate-shaped nano-particles also show excellent catalytic activity in the deprotection reaction of the hydrogenation reduction 4-methoxy-nitrobenzene and the phenyldimethylal, respectively.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 ;纳米材料[J];新型建筑材料;2000年09期
2 杜仕国,施冬梅,邓辉;纳米材料的特异效应及其应用[J];自然杂志;2000年02期
3 ;纳米材料 新世纪的黄金材料[J];城市技术监督;2000年10期
4 ;什么是纳米材料[J];中国粉体技术;2000年05期
5 邹超贤;纳米材料的制备及其应用[J];广西化纤通讯;2000年01期
6 吴祖其;纳米材料[J];光源与照明;2000年03期
7 ;纳米材料的特性与应用方向[J];河北陶瓷;2000年04期
8 沈青;纳米材料的性能[J];江苏陶瓷;2000年01期
9 李良训;纳米材料的特性及应用[J];金山油化纤;2000年01期
10 刘冰,任兰亭;21世纪材料发展的方向—纳米材料[J];青岛大学学报(自然科学版);2000年03期
相关会议论文 前10条
1 王少强;邱化玉;;纳米材料在造纸领域中的应用[A];'2006(第十三届)全国造纸化学品开发应用技术研讨会论文集[C];2006年
2 宋云扬;余涛;李艳军;;纳米材料的毒理学安全性研究进展[A];2010中国环境科学学会学术年会论文集(第四卷)[C];2010年
3 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
4 钟家湘;葛雄章;刘景春;;纳米材料改造传统产业的实践与建议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
5 高善民;孙树声;;纳米材料的应用及科研开发[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
6 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年
7 金一和;孙鹏;张颖花;;纳米材料的潜在性危害问题[A];中国毒理学通讯[C];2001年
8 张一方;吕毓松;任德华;陈永康;;纳米材料的二种制备方法及其特征[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
9 古宏晨;;纳米材料产业化重大问题及共性问题[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
10 马玉宝;任宪福;;纳米科技与纳米材料[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
相关重要报纸文章 前10条
1 记者 周建人;我国出台首批纳米材料国家标准[N];中国建材报;2005年
2 记者 王阳;上海形成纳米材料测试服务体系[N];上海科技报;2004年
3 ;纳米材料七项标准出台[N];世界金属导报;2005年
4 通讯员 韦承金邋记者 冯国梧;纳米材料也可污染环境[N];科技日报;2008年
5 廖联明;纳米材料 利弊皆因个头小[N];健康报;2009年
6 卢水平;院士建议开展纳米材料毒性研究[N];中国化工报;2009年
7 郭良宏 中国科学院生态环境研究中心研究员 江桂斌 中国科学院院士;纳米材料的环境应用与毒性效应[N];中国社会科学报;2010年
8 记者 任雪梅 莫璇;中科院纳米材料产业园落户佛山[N];佛山日报;2011年
9 实习生 高敏;纳米材料:小身材涵盖多领域[N];科技日报;2014年
10 本报记者 李军;纳米材料加速传统行业升级[N];中国化工报;2013年
相关博士学位论文 前10条
1 杨杨;功能化稀土纳米材料的合成及其生物成像应用[D];复旦大学;2014年
2 王艳丽;基于氧化钛和氧化锡纳米材料的制备及其在能量存储中的应用[D];复旦大学;2014年
3 吴勇权;含铕稀土纳米材料的功能化及其生物成像应用研究[D];复旦大学;2014年
4 曹仕秀;二硫化钨(WS_2)纳米材料的水热合成与光吸收性能研究[D];重庆大学;2015年
5 廖蕾;基于功能纳米材料的电化学催化研究[D];复旦大学;2014年
6 胥明;一维氧化物、硫化物纳米材料的制备,功能化与应用[D];复旦大学;2014年
7 李淑焕;纳米材料亲疏水性的实验测定与计算预测[D];山东大学;2015年
8 范艳斌;亚细胞水平靶向的纳米材料的设计、制备与应用[D];复旦大学;2014年
9 丁泓铭;纳米粒子与细胞相互作用的理论模拟研究[D];南京大学;2015年
10 骆凯;基于金和石墨烯纳米材料的生物分子化学发光新方法及其应用[D];西北大学;2015年
相关硕士学位论文 前10条
1 向芸颉;卟啉纳米材料的制备及其应用研究[D];重庆大学;2010年
2 刘武;层状纳米材料/聚合物复合改性沥青的制备与性能[D];华南理工大学;2015年
3 刘小芳;基于纳米材料/聚合膜材料构建的电化学传感器应用于生物小分子多组分的检测[D];西南大学;2015年
4 王小萍;基于金纳米材料构建的电化学传感器及其应用[D];上海师范大学;2015年
5 郭建华;金纳米材料的修饰及其纳米生物界面的研究[D];河北大学;2015年
6 魏杰;普鲁士蓝纳米粒子的光热毒性研究[D];上海师范大学;2015年
7 张华艳;改性TiO_2纳米材料的制备及其光电性能研究[D];河北大学;2015年
8 胡雪连;基于纳米材料的新型荧光传感体系的构筑[D];江南大学;2015年
9 黄樊;氧化钴基催化材料形貌、晶面控制与催化性能研究[D];昆明理工大学;2015年
10 周佳林;新型核壳结构金纳米材料用于肿瘤的近红外光热治疗研究[D];浙江大学;2015年
,本文编号:2289227
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2289227.html