当前位置:主页 > 硕博论文 > 工程博士论文 >

大豆蛋白凝胶结构与非网络蛋白扩散行为或网络蛋白性质关系的研究

发布时间:2018-12-15 05:42
【摘要】:凝胶性是大豆蛋白最突出的功能性质之一,为食品体系贡献弹性、硬度、持水性、风味成分保留等功能。目前,凝胶型大豆蛋白在肉制品、千叶豆腐、鱼糜制品等产品中应用广泛。认识凝胶结构、了解凝胶结构和性质的关系,对凝胶型大豆蛋白产品的开发和应用均有理论和实际指导意义。本论文从确定大豆蛋白凝胶中网络蛋白和非网络蛋白的组成入手,通过研究非网络成分的扩散行为以及凝胶的质构、流变和微观结构特性,对凝胶网络结构进行了表征;同时通过测定蛋白质的组成、网络蛋白的浓度和网络蛋白之间相互作用力的变化,揭示了凝胶网络结构变化的原因。首先,采用扩散法对凝胶中非网络蛋白和网络蛋白进行了分离,通过不同电泳技术对两类蛋白质的组成及存在形式进行了分析。以18%(w/v)蛋白质溶液在0.1 nol/L盐离子浓度和95℃条件加热30 min形成的大豆蛋白凝胶中的非网络蛋白为代表,其主要组成是11S的A、B肽链和胰凝乳蛋白酶抑制剂(BBI),此外含有少量的7S-α’、α亚基。其中B肽链以AB和A5B3的形式存在;A肽链除了这两种形式外,还包含单体、二聚体、三聚体和聚合体等形式;BBI以单体形式存在。针对网络蛋白组成的研究,讨论中结合分析了三种蛋白凝胶中的网络蛋白。其中,7S-α、α’亚基通过形成聚集体和多聚体两种形式参与到凝胶网络结构中;7S-β亚基是以聚集体的形式参与到凝胶网络结构中。11S-A3、A肽链主要以二硫键连接的聚合体的形式参与到凝胶网络结构中,而11SB肽链可以以单体、二聚体、聚合体、聚集体等形式参与到凝胶网络中。在此基础上,继续研究了非网络蛋白的扩散行为和凝胶结构变化的关系;并通过分析非网络蛋白和网络蛋白的组成及含量的变化,揭示了凝胶网络结构变化的原因。排阻色谱分析表明非网络蛋白由三部分组成,相对分子质量分别为253.9、44.8和9.7 kDa;三种成分在起始阶段的扩散符合Fick第二定律。制备凝胶时的蛋白质浓度增加或加热时间延长可引起非网络蛋白扩散系数的降低。扩散系数与相对分子质量之间符合幂次函数关系,其中特征指数因子α值随着蛋白质浓度增加、加热时间延长而变大,说明凝胶网络结构趋于致密。电泳和蛋白质浓度分析结果表明,11S蛋白变性程度和网络蛋白含量的增加是导致凝胶网络结构致密的原因。进一步通过研究外源性分子探针的扩散考察了7S/11S比率和盐浓度对凝胶网络结构的影响;并采用扫描电子显微镜对扩散实验结果进行了验证。在同一条件下制备的蛋白质凝胶中,探针的相对分子质量越大扩散系数越小;在不同的蛋白质凝胶中,探针相对分子质量越大,其扩散对凝胶网络结构的变化越敏感。凝胶中探针的扩散系数随着盐离子浓度或总蛋白中11S比率的增加而增大;扫描电子显微镜数据结果显示,随着盐离子浓度或11S比率增加,凝胶网络结构孔隙变大、蛋白质聚集体分布不均匀,导致探针在网络结构中容易扩散。通过测定凝胶在SDS溶液或SDS和DTT混合溶液中溶解速率,对凝胶网络蛋白中分子间作用力的类型和大小进行了表征,并与凝胶破裂力的测定结果进行了比较。结果表明,疏水、氢键相互作用和二硫键均参与了大豆蛋白凝胶网络结构的形成;作用力强弱的变化与凝胶破裂力大小的变化呈正相关。随着总蛋白中11S比率增加或加热温度升高,凝胶中疏水、氢键相互作用和二硫键均加强,凝胶破裂力的值逐渐增大;随着加热时间的延长,网络蛋白分子间相互作用和凝胶破裂力均呈现先增大后减小的变化趋势。此外,对比发现加热温度对三个作用力的影响最大,加热温度变化对凝胶破裂力影响更为显著。最后研究了大豆蛋白凝胶的弹性模量与非网络蛋白、网络蛋白含量以及蛋白质聚集体大小的关系。通过扩散法去除凝胶中的非网络蛋白,对去除前后凝胶弹性模量进行了测定,发现非网络蛋白对凝胶弹性模量没有贡献。随着加热温度升高,11S蛋白变性程度增加,网络蛋白占总蛋白的比率增加,进而导致凝胶弹性模量呈指数性增加。盐离子浓度和7S/11S比率对凝胶弹性模量的影响不完全取决于网络蛋白占总蛋白比率,此时凝胶弹性模量与蛋白质聚集体的平均粒径呈正相关。
[Abstract]:Gelatin is one of the most outstanding functional properties of the soybean protein, which is the function of the food system's contribution to elasticity, hardness, water-holding property and flavor component retention. At present, the gel-type soybean protein is widely used in the products such as meat products, bean curd, minced fish products and the like. To understand the gel structure, to understand the relationship between the structure and properties of the gel, the development and application of the gel-type soybean protein product are both theoretical and practical. Based on the determination of the composition of the network protein and the non-network protein in the soybean protein gel, the gel network structure was characterized by studying the diffusion behavior of the non-network component and the properties of the texture, the rheological and the microstructure of the gel, and the composition of the protein was also determined. The change of the interaction force between the concentration of the network protein and the network protein reveals the cause of the change of the gel network structure. First, the non-network protein and the network protein in the gel were separated by the diffusion method, and the composition and the existing form of the two kinds of proteins were analyzed by different electrophoretic techniques. The non-network protein in the soy protein gel, which was formed by heating for 30 min at a concentration of 0.1 mol/ L and at 95.degree. C. with an 18% (w/ v) protein solution, was represented by a peptide chain of 11S and a chymotrypsin inhibitor (BBI), in addition to a small amount of 7S-1. ', sub-subunit. in which the B-chain is present in the form of AB and A5B3; in addition to these two forms, the peptide chain also contains the form of monomers, dimers, trimers, and polymers; and the BBI is present in the form of a monomer. In order to study the network protein composition, the network protein in three kinds of protein gel was analyzed in the paper. Of which, 7S-1, 1' the subunits are involved in the gel network structure by forming aggregates and multimers; the 7s-subunits are in the form of aggregates that are involved in the gel network structure, The 11SB peptide chain may be incorporated into the gel network in the form of monomers, dimers, polymers, aggregates, and the like. On this basis, the relationship between the non-network protein's diffusion behavior and the change of the gel structure was studied, and the reason of the change of the gel network structure was revealed by analyzing the composition and the content of the non-network protein and the network protein. The analysis of exclusion chromatography showed that the non-network protein was composed of three parts, and the relative molecular weight was 253.9, 42.8 and 9.7kDa, respectively. The diffusion of the three components in the initial stage was in accordance with the Fick's second law. The increase in protein concentration or prolonged heating time during the preparation of the gel may result in a decrease in the non-network protein diffusion coefficient. The relationship between the diffusion coefficient and the relative molecular mass is a power-order function, wherein the value of the characteristic index factor is increased with the increase of the concentration of the protein, the heating time is prolonged, and the gel network structure tends to be compact. The results of the analysis of electrophoresis and protein concentration show that the degree of denaturation of 11S protein and the increase of the content of the network protein are the cause of the dense structure of the gel network. The effect of the ratio of 7S/ 11S and the salt concentration on the structure of the gel was further investigated by the study of the diffusion of the exogenous molecular probe, and the results of the diffusion experiment were verified by the scanning electron microscope. In the protein gel prepared under the same condition, the greater the relative molecular mass of the probe and the smaller the diffusion coefficient of the relative molecular mass of the probe, the greater the relative molecular mass of the probe in different protein gels, the more sensitive the diffusion of the probe to the gel network structure. the diffusion coefficient of the probe in the gel is increased with the increase of the concentration of the salt ions or the 11S ratio in the total protein; the scanning electron microscope data show that as the concentration of the salt or the 11S ratio increases, the pore of the gel network structure becomes large, the distribution of the protein aggregates is not uniform, resulting in an easy diffusion of the probe in the network structure. The type and size of the intermolecular force in the gel network protein were characterized by measuring the dissolution rate of the gel in the SDS solution or SDS and the DTT mixed solution, and compared with the determination result of the gel breaking force. The results showed that both the hydrophobic, hydrogen bond interaction and the disulfide bond were involved in the formation of the network structure of the soybean protein gel; the change of the strength of the acting force was positively related to the change of the gel breaking force. As the 11S ratio in the total protein is increased or the heating temperature is increased, the hydrophobic, hydrogen bond interaction and the disulfide bond in the gel are enhanced, the value of the gel breaking force is gradually increased, and as the heating time is prolonged, The interaction between the network protein molecules and the gel breaking force exhibit a tendency to decrease after the first increase. In addition, the effect of the heating temperature on the three forces was found to be the largest, and the change of the heating temperature was more significant to the gel breaking force. The relationship between the elastic modulus of the soybean protein gel and the non-network protein, the content of the network protein and the size of the protein aggregates was studied. The non-network protein in the gel was removed by the diffusion method, and the elastic modulus of the gel before and after removal was measured, and the non-network protein was found to have no contribution to the elastic modulus of the gel. As the temperature of the heating increases, the degree of denaturation of the 11S protein increases, and the ratio of the network protein to the total protein is increased, resulting in an exponential increase in the elastic modulus of the gel. The effect of the salt ion concentration and the ratio of 7S/ 11S on the elastic modulus of the gel is not entirely dependent on the total protein ratio of the network protein, at which point the elastic modulus of the gel is positively related to the average particle size of the protein aggregate.
【学位授予单位】:江南大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TS201.21

【相似文献】

相关期刊论文 前10条

1 冯剑;黄永民;刘洪来;;凝胶网络中溶剂性质的分子动力学模拟[J];化工学报;2007年05期

2 杨修造;;硅酸水凝胶网络显微研究初步[J];安徽师大学报(自然科学版);1986年04期

3 黄健;黄志明;包永忠;单国荣;翁志学;;非离子型凝胶球在水中的溶胀行为[J];高校化学工程学报;2006年06期

4 王宇新,王世昌,余国琮;凝胶萃取过程中的溶质分配和凝胶滞胀[J];天津大学学报;1991年03期

5 张高奇,周美华,马敬红,梁伯润;1、4-聚丁二烯凝胶网络中的溶质扩散动力学研究[J];东华大学学报(自然科学版);2003年06期

6 阎立峰,陈文明,赵秉熙,李喜青;辐射法合成凝胶对高分子网络结构的探讨[J];高分子材料科学与工程;1999年06期

7 黎甜楷,赵为,王令萱,张宝文,曹怡;双(2,4,6-苯三酚)方酸掺杂的SiO_2凝胶薄片的制备及其光物理性能(英文)[J];感光科学与光化学;1998年04期

8 刘东州;赵昨非;王海军;;A_a型反应体系中凝胶网络结构参数的标度研究[J];河北大学学报(自然科学版);2008年03期

9 王海军,吕中元,黄旭日,李泽生;A_f型自由基均聚反应的固化理论(Ⅱ)──凝胶网络的结构参数[J];高等学校化学学报;1998年10期

10 吴奇,汪晓辉,高均;激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(下)[J];高分子通报;1998年04期

相关会议论文 前10条

1 周超;袁洋;姜华;姚芳;张奥开;付国东;;具有精确分子结构高性能凝胶网络的制备及研究[A];2013年全国高分子学术论文报告会论文摘要集——主题F:功能高分子[C];2013年

2 邹嘉佳;杨卓;游峰;陈光顺;郭少云;;PVC/TOTM(100/70)体系动态流变行为的温度响应[A];中国化学会第28届学术年会第18分会场摘要集[C];2012年

3 邹嘉佳;游峰;苏琳;杨卓;陈光顺;郭少云;;PVC增塑体系温度依赖性的动态流变学表征[A];中国流变学研究进展(2010)[C];2010年

4 尹屹梅;张洪斌;;典型多糖溶胶-凝胶转变和凝胶机理的电化学表征[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年

5 孙平川;王亦农;马建标;黎明;何丙林;金庆华;郭振亚;丁大同;;交联共聚凝胶中大分子网络链运动与缠结的NMR研究[A];第九届全国波谱学学术会议论文摘要集[C];1996年

6 马杰;;新兴大豆蛋白食品[A];北京食品学会1982年年会论文(摘要)[C];1982年

7 温光源;胡小中;;新兴大豆蛋白制品的营养、功能特性及应用[A];中国粮油学会第二届学术年会论文选集(综合卷)[C];2002年

8 张玉琴;;利用大豆蛋白强化油炸方便面的研究[A];北京食品学会青年科技论文集[C];1992年

9 郑二丽;吴娜娜;杨晓泉;;良好风味大豆蛋白的制备研究[A];2010年中国农业工程学会农产品加工及贮藏工程分会学术年会暨华南地区农产品加工产学研研讨会论文摘要集[C];2010年

10 郭凤仙;李伟伟;熊幼翎;陈洁;;贮藏条件对豆粉中油脂及大豆蛋白稳定性的影响[A];中国食品科学技术学会第八届年会暨第六届东西方食品业高层论坛论文摘要集[C];2011年

相关重要报纸文章 前10条

1 万建文;我国大豆蛋白开发前景可观[N];今日信息报;2005年

2 本报记者 祝松;大豆蛋白可保护心脏健康[N];中国食品质量报;2005年

3 陈军梅;舒莱倡导大豆蛋白保健康[N];中国质量报;2007年

4 刘伟 魏传民;聊城局开拓大豆蛋白出口市场[N];中国国门时报;2006年

5 记者 范建;方便面吃多了想换口味 大豆蛋白营养餐钻空子[N];科技日报;2006年

6 金讯;大豆蛋白行业发展前景“柳暗花明”[N];粮油市场报;2006年

7 李锦华;大豆蛋白为百姓营养健康带来福音[N];消费日报;2006年

8 任重;大豆蛋白市场群雄争霸[N];中国商报;2006年

9 记者 林琳邋实习生 景岩;陕加合作建设万吨大豆蛋白深加工项目[N];陕西日报;2007年

10 雷收麦;普及大豆蛋白知识惠及民生[N];中国商报;2007年

相关博士学位论文 前10条

1 吴超;大豆蛋白凝胶结构与非网络蛋白扩散行为或网络蛋白性质关系的研究[D];江南大学;2017年

2 田琨;大豆蛋白的结构表征及应用研究[D];复旦大学;2010年

3 杨娟;特殊人群专用大豆蛋白配料制备及其营养功效评价[D];华南理工大学;2015年

4 郭凤仙;大豆蛋白在贮藏过程中品质下降机制及控制途径[D];江南大学;2015年

5 王鑫;用于生物医用材料的大豆蛋白仿真制备研究[D];东北农业大学;2014年

6 崔竹梅;大豆蛋白—芦丁复合乳状液的稳定性及其对β-胡萝卜素缓释效应的研究[D];江南大学;2016年

7 李伟伟;高乳化性大豆蛋白的制备及其界面流变性质的研究[D];江南大学;2017年

8 潘明U,

本文编号:2380081


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2380081.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b1297***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com