电流变液的力学性能研究及其微观结构研究
[Abstract]:As a typical intelligent material, the mechanical properties of the electrorheological fluid can change significantly under the applied electric field, and the change is fast and reversible. In view of this special property, the electrorheological fluid has a wide application prospect in the force-electric coupling device. Therefore, the mechanism analysis of the change of the mechanical property of the electrorheological fluid has always been the focus and difficulty in the field of current fluid-changing research. Under the effect of the applied electric field, the current-changing particles form a chain-like structure between the plates, so that the shear stress and the apparent viscosity of the electrorheological fluid are obviously increased. The relationship between the microstructure and the mechanical property in the working state of the electrorheological fluid is the key to explain the mechanism of the current transformation. Due to the limitation of the experimental conditions, the microstructure of the electrorheological particles is very difficult to be observed directly, so the simulation is an important method to study the mechanism of the rheological fluid of the current. The correctness of the calculation model is verified by the experimental phenomenon, and the phenomenon of the observation in the experiment is explained by the result of the simulation. In this paper, the mechanical properties of the electrorheological fluid at the time of compression and shearing are studied by the method of combination of experiment and calculation, and the action mechanism of the different influencing factors is explored. The specific work is as follows:1. In this paper, the variation of the normal stress in the current-changing liquid under the compression mode is studied by means of the simulation calculation of the experiment. The effect of the compression rate on the stress of the electrorheological fluid is tested by the high normal stress at the time of compression. Under the same conditions, the smaller the compression speed, the greater the normal stress of the electrorheological fluid. This is caused by the phenomenon that the particle of the electrorheological fluid is separated from the base liquid under the action of the applied electric field, the smaller the compression speed, the more obvious the phenomenon of the separation of the particles from the base liquid, and the chain structure of the current-changing particles is more stable and can bear more stress. Then, based on the dipole model, the compression model of the electrorheological fluid is put forward, and the simulation results and the experimental results are compared, and the reliability of the compression calculation model is verified. The effects of the applied electric field strength, compressive strain and shear rate on the stress of the electrorheological fluid are simulated. The shear rate is small, and the effect of shear on the stress of the electrorheological fluid is very small; with the increase of the shear rate, the normal stress of the electrorheological fluid is gradually reduced. The normal stress of the electrorheological fluid under the shearing action is the phenomenon of the oscillation change. Through the calculation of the micro-structure, it is found that the micro-structure of the current-variable particles is destroyed and the recombination is the reason of the normal stress oscillation. The effect of the dielectric loss on the mechanical properties of the rheological fluid in the shear field is studied by means of experiment and simulation. The dielectric loss performance of the titanium dioxide particles was changed by the method of ion doping. The dielectric loss spectrum of modified particles and the shear rheological curve of the electrorheological fluid were tested, and the effect of the dielectric loss on the rheological property of the rheological fluid was found. The increase of the ion doping ratio reduces the relaxation frequency and the dielectric loss of the current-variable particles, and the current-changing efficiency of the current-changing liquid is also gradually reduced. When the relaxation frequency of the particles is lower than 100 Hz, the current transformer loses the current variable effect in a certain shear rate range, and the effective working range is reduced. The effect of relaxation time in the dielectric loss on the mechanical properties of the electrorheological fluid is simulated. When the relaxation time is more than 0.01 s, the critical shear rate is reduced, and the effective working range of the current transformer is reduced, which is consistent with the conclusion in the experiment. The mechanism of the effect of the dielectric loss on the electrorheological fluid is given. The direction of the particle dipole moment and the direction of the particle chain are not uniform when the relaxation frequency is too large, so that the interaction force between the particles in the particle chain direction is weakened, and the strength of the particle chain structure is reduced even by the attractive force becoming a repulsive force. The changes of the mechanical properties of the rheological fluid under shear are simulated, and the effect of shear rate on the shear stress of the rheological fluid under different conditions is studied in combination with the experiment. The effect of volume fraction, electric field strength and shear rate on the mechanical properties of the electrorheological fluid is studied by using the calculation model based on the dipole-polarization theory. The effect of the shear rate on the mechanical properties of the electrorheological fluid is explained by the calculation of the two-dimensional simulation and the microstructure under the steady-state shear. In this paper, three different states of shear rate on the shear stress of current-varying fluid are found, and the simulation results are verified. The mechanism of the effect of shear rate on the mechanical properties of the electrorheological fluid under different conditions is explained by the calculated microstructure evolution: under the low shear rate, the particle chain structure is inclined to the shearing direction, and the shear stress is increased with the increase of the shear rate; at the moderate shear rate, the structure of the particle chain is in a dynamic equilibrium state of destruction and recombination, and the shear stress changes with time; under the high shear rate, the current variable reaches the shear yield state, the chain structure is completely destroyed, the influence of the electric field on the shear stress is weak, The shear stress of the electrorheological fluid is dominated by the force of the liquid, showing the properties of the Bingham fluid.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB381
【相似文献】
相关期刊论文 前10条
1 尹剑波;一种新型材料——电流变液的研究现状及应用[J];江苏化工;2000年07期
2 何峰,张正义,汪武祥,韩雅芳,肖耀福,王润;新型材料一电流变液[J];功能材料;2001年01期
3 许素娟,王彪,门守强,陆坤权;电流变液材料研究进展[J];宇航材料工艺;2001年02期
4 龚烈航,崔占山;电流变液机理及其研究现状[J];润滑与密封;2002年01期
5 龚裂航,李忠国 ,陆国胜 ,韩寿松;电流变离合器用电流变液探讨[J];液压气动与密封;2002年03期
6 李斌,杨智春,张开达;电流变液力学特性的实验研究[J];机械科学与技术;2003年03期
7 周文管,王喜顺;影响电流变液流变特性的因素[J];塑料;2003年04期
8 ;新型电流变液研制成功[J];发明与创新;2004年01期
9 庞雪蕾,唐芳琼;电流变液体的研究进展[J];化学进展;2004年06期
10 郑雁军,崔立山;电流变液机理和材料的研究[J];保定师范专科学校学报;2005年02期
相关会议论文 前10条
1 张建卫;黎文峰;李甲兮;;电流变液的连续性动力学方法研究[A];第七届全国液体和软物质物理学术会议程序册及论文摘要集[C];2010年
2 郑华文;吴张永;唐向阳;杨用;;电流变液的流变特性分析和研究[A];第一届全国流体动力及控制工程学术会议论文集(第二卷)[C];2000年
3 田煜;孟永钢;温诗铸;;温度对基于沸石和硅油的电流变液性能的影响[A];第七届全国摩擦学大会会议论文集(一)[C];2002年
4 龚裂航;李忠国;陆国胜;韩寿松;;电流变离合器用电流变液探讨[A];第二届全国流体传动及控制工程学术会议论文集(第一卷)[C];2002年
5 刘刚;李酽;;电流变液及其在航空中的应用[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
6 刘雪辉;郭建军;程昱川;许高杰;崔平;;热处理对钛酸钙体系电流变液的影响[A];第七届全国液体和软物质物理学术会议程序册及论文摘要集[C];2010年
7 张建华;陶德华;张毅;张直明;;电流变液的工程应用[A];第六届摩擦学工矿企业润滑技术工业应用学术年会论文集[C];1998年
8 张贺;魏雪霞;;电流变液智能材料力学行为的理论研究[A];北京力学会第11届学术年会论文摘要集[C];2005年
9 张敏梁;田煜;孟永钢;温诗铸;;电流变液的小应变拉伸弹性模量[A];第八届全国摩擦学大会论文集[C];2007年
10 程杰;郦光明;许沧粟;;改性电流变液的制备和性能测试[A];山东汽车工程学会第九次学术年会优秀论文集[C];2007年
相关博士学位论文 前10条
1 范吉军;电流变液微波穿透可调控行为特征[D];西北工业大学;2002年
2 李丛;巨电流变液的非平衡态结构研究[D];复旦大学;2012年
3 江艳萍;甲基丙烯酸烷基酯改性的纳米二氧化钛电流变体系的构建、性能研究及在电泳显示中的应用[D];天津大学;2014年
4 王志远;电流变液的力学性能研究及其微观结构研究[D];中国科学技术大学;2017年
5 丁律辉;电流变液声传播机理及特性研究[D];华中科技大学;2010年
6 张敏梁;电流变液力学性能研究[D];清华大学;2009年
7 彭杰;电流变液及屈服应力流体动力学分析[D];清华大学;2002年
8 路军;聚芳香胺/蒙脱土纳米复合材料电流变液的制备及性能研究[D];西北工业大学;2003年
9 郑玲;电流变材料及减振控制研究[D];重庆大学;2005年
10 唐宏;电流变液体的声学及振动控制行为研究[D];西北工业大学;2005年
相关硕士学位论文 前10条
1 方振南;颗粒浸润性对胶体电流变液性质影响的研究[D];复旦大学;2009年
2 高秀敏;电流变液微波、光学性质及其结构演化特征[D];西北工业大学;2003年
3 袁伟;多场耦合作用下电流变液的动力学特性模拟研究[D];湘潭大学;2012年
4 康雨宁;纳米纤维素对二氧化钛电流变液的性能改善研究[D];东北林业大学;2015年
5 蔺彦梅;聚苯胺/BaTiO_3包覆粉煤灰漂珠复合材料的制备及其电流变性能的研究[D];西安建筑科技大学;2015年
6 霍爽;TiO_2尿素及TiO_2/氧化石墨烯核壳型电流变液的制备及性能比较[D];大连理工大学;2015年
7 沈超;凝胶态电流变弹性体的制备及性能研究[D];大连理工大学;2015年
8 杨惠;颗粒表面形貌对电流变液性能影响的机理研究[D];大连理工大学;2015年
9 陈雨露;中空TiO_2微球的制备及其电流变性能研究[D];青岛科技大学;2016年
10 田晓莉;多级结构纳米复合电流变颗粒的制备及其性能研究[D];青岛科技大学;2016年
,本文编号:2455747
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2455747.html