Fresnel聚光器的优化设计及其在聚光光伏中的应用研究
[Abstract]:In order to improve the competitiveness of the light-gathering photovoltaic technology, the performance of the light-gathering photovoltaic product is needed to be further improved, and the power generation cost is reduced. At present, the industrial efficiency of the domestic Gain P/ Ga In As/ Ge multi-junction solar cell has reached more than 40%, but the efficiency of the concentrating photovoltaic module is far lower than that of the photovoltaic cell. The influence of various non-ideal factors is analyzed, and it is found that the condenser is one of the main sources of efficiency loss. The traditional flat-plate Fresnel condenser is mainly based on the imaging principle and the single-wavelength design, and the light-gathering effect is not ideal. (2) There is a problem that the focal spot space and the spectral distribution are not uniform, leading to the reduction of the short-circuit current, the filling factor and the photoelectric conversion efficiency of the Ga In P/ Ga In As/ Ge multi-junction cell. In order to make full use of the high efficiency of the Ga InP/ Ga In As/ Ge multi-junction cell, a condenser with excellent performance is required, thereby improving the industrialization efficiency of the light-collecting photovoltaic module. In view of the above problems, in the support of the "Key technology of the industrialization of megawatt-level high-power light-gathering compound solar cell (2011 AA050507)" of the national 863 project, this paper adopts the method of combining the theoretical analysis, the simulation calculation and the experimental research, and the design and development of the new Fresnel condenser is carried out, and the application of the new Fresnel condenser in the light-gathering photovoltaic is also carried out. And the photoelectric conversion efficiency of the light-gathering photovoltaic module is improved. The specific research results are as follows:1. The theoretical calculation model of the performance characteristic parameters of the Fresnel condenser is established. In this paper, the concept of cut-off loss is introduced, the optical loss of the Fresnel condenser is quantitatively analyzed, the factors that influence the efficiency of the light-gathering are analyzed in detail, and the theoretical calculation model of the uniformity of the focal spot is established based on the ray tracing method. An efficient and uniform light-gathering Fresnel lens for Ga In P/ Ga In As/ Ge multi-junction solar cell is designed. In this paper, the spectral response characteristics of the AMM1.5 D solar spectrum, the spectral response characteristics of each sub-cell and the refractive index dispersion curve of the lens material are comprehensively considered, and the Fresnel lens is optimized by using a combination of multi-wavelength and multi-focus. Based on the ray tracing method, the light-gathering performance of the novel lens is evaluated, and the simulation results show that the designed lens is more than 75% in the 300-1800 nm wide spectral range and the light-gathering distribution uniformity in each sub-cell spectrum response band, and the light-gathering efficiency is more than 80%; The electrical performance simulation and experimental study of the high-power-concentration photovoltaic cell were carried out. On the basis of the equivalent circuit of the multi-junction solar cell, a simplified three-dimensional distributed grid circuit model is established, and the simulation and analysis of the I-V characteristics of the multi-junction solar cell under the non-uniform light-gathering condition are realized by the method of the Lspice + Matlab. A new Fresnel lens and a Gain P/ Ga InAs/ Ge multi-junction solar cell receiving module are combined to form a high-power concentration photovoltaic cell, and the electrical performance of the high-power light-gathering photovoltaic cell is simulated and analyzed based on the established three-dimensional distributed grid circuit model and the ray tracing method. The simulation results show that the photoelectric conversion efficiency of the designed new Fresnel lens condenser photovoltaic cell is 32.4%, and the conversion efficiency of the specific point focusing Fresnel lens condenser photovoltaic cell is improved by nearly 8%. On the basis of the simulation research, an outdoor test platform is built, and the light-gathering performance of the designed Fresnel lens and the electrical characteristics of the light-collecting photovoltaic cell are actually tested. The light-gathering photovoltaic module based on the new Fresnel condenser was developed. By adding the large-diameter light guide tube device, the receiving angle of the light-collecting photovoltaic module reaches more than 1 degree, the requirement on the accuracy of the tracker is reduced, and the reliability of the module is improved. And the structure of the packaging material and the module is determined based on the heat dissipation analysis and the cost considerations. By optimizing the packaging process and controlling the installation error, the module samples were prepared, and the electrical characteristics and the temperature characteristics of the module samples were tested. The test results show that the module has good output performance, the direct irradiance is 850W/ m ~ 2, the conversion efficiency is 27.9% and the maximum output power is 89.39W; at the same time, the module can meet the actual heat dissipation demand well, and most of the day in the day. The temperature of the module is in the range of 40 to 55 DEG C, and the maximum temperature is 60.5 DEG C.
【学位授予单位】:华北电力大学(北京)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TK513.1
【相似文献】
相关期刊论文 前10条
1 ;Design and investigation of fraction Fresnel zone plate[J];Chinese Journal of Lasers;1993年01期
2 郭丰;;聚光光伏的发展[J];电源技术;2009年10期
3 周奕琛;张斌;;基于时间序列成本预测的低倍聚光光伏未来成长性分析[J];中国石油和化工标准与质量;2013年24期
4 田玮;王一平;韩立君;刘永辉;张金利;;聚光光伏系统的技术进展[J];太阳能学报;2005年04期
5 ;世界上最大的聚光光伏项目提前动工[J];中国电业(技术版);2011年09期
6 张志刚;;聚光光伏技术概述[J];科技传播;2012年18期
7 李穆然;李娜;;固定式聚光光伏发电方案简介[J];太阳能;2012年14期
8 穆杰;夏宏宇;仲琳;;聚光光伏商业分析[J];电源技术;2013年04期
9 穆杰;夏宏宇;仲琳;;屋顶型聚光光伏系统[J];太阳能;2013年13期
10 ;第二届天津国际聚光光伏技术研讨会成功召开[J];太阳能;2013年22期
相关会议论文 前7条
1 舒碧芬;沈辉;金井升;陈美园;;聚光光伏系统接收器优化设计要素[A];第十届中国太阳能光伏会议论文集:迎接光伏发电新时代[C];2008年
2 蔡明娟;何建国;曹兵;;CEM中Fresnel积分的计算[A];2005'全国微波毫米波会议论文集(第三册)[C];2006年
3 王子龙;张华;张海涛;耿直;;太阳能聚光光伏电池热管冷却方法分析[A];中国制冷学会2009年学术年会论文集[C];2009年
4 刘伟;杨军;;一种基于衍射柱面波的Fresnel近似的多Gaussian波束模型[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
5 ;Focal performance of metallic diffractive cylindrical micromirrors designed by a monotonic-increasing-thickness model[A];中国光学学会2011年学术大会摘要集[C];2011年
6 张聪;张华;;太阳能聚光光伏系统散热器设计[A];上海市制冷学会2011年学术年会论文集[C];2011年
7 李烨;张华;王子龙;;高倍数碟式聚光光伏系统及其散热器结构优化方案[A];上海市制冷学会2011年学术年会论文集[C];2011年
相关重要报纸文章 前10条
1 记者 方霞 通讯员 张文术;聚光光伏行业会聚嘉兴“论剑”未来[N];嘉兴日报;2012年
2 本报记者 诸玲珍;聚光光伏:成本优势明显 推广仍需时日[N];中国电子报;2010年
3 本报记者 张蕾;聚光光伏时代或将到来[N];中国电力报;2010年
4 本报记者 邢佰英;国内最大 并网聚光光伏电站落成[N];中国证券报;2011年
5 记者 孙玉宝;高倍聚光光伏产业化项目开工[N];安徽日报;2011年
6 通讯员 高茜;改变聚光光伏国际标准制定中国企业“失语”状态[N];中国电力报;2011年
7 记者 管晶晶;我国聚光光伏企业将参与国际标准制定[N];科技日报;2011年
8 本报记者 王海霞;聚光光伏将引领太阳能发电技术[N];中国能源报;2011年
9 记者 陈捷;三安光电高倍聚光光伏产业化项目开工[N];上海证券报;2011年
10 记者 孙玉宝;高倍聚光光伏产业化取得突破[N];安徽日报;2012年
相关博士学位论文 前10条
1 付蕊;Fresnel聚光器的优化设计及其在聚光光伏中的应用研究[D];华北电力大学(北京);2017年
2 张博阳;液浸聚光光伏系统冷却工质二甲基硅油的光学特性研究[D];天津大学;2015年
3 弭辙;高倍聚光光伏电站优化设计[D];华北电力大学(北京);2016年
4 孙勇;线性液浸聚光光伏冷却系统流动与传热性能研究[D];天津大学;2014年
5 谢传梅;量子光学中与经典Fresnel变换对应的若干新幺正算符[D];中国科学技术大学;2010年
6 王子龙;聚光光伏系统中太阳能电池的冷却问题研究[D];上海理工大学;2011年
7 张海燕;基于平面镜反射的聚光光伏系统研究[D];合肥工业大学;2012年
8 马宏财;高效能空间薄膜聚光光伏系统研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
9 荆雷;新型Fresnel光伏聚光镜的设计研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
10 陈海飞;高倍聚光光伏光热综合利用系统的理论和实验研究[D];中国科学技术大学;2014年
相关硕士学位论文 前10条
1 庄琳玲;高效抑制斜入射光线Fresnel反射的扩散器件及应用[D];华侨大学;2015年
2 代明崇;密集矩阵式聚光光伏模组散热技术研究[D];北京工业大学;2015年
3 陈创业;聚光光伏系统平板型CPC聚光器光学性能研究与分析[D];云南师范大学;2015年
4 汪源;聚光光伏追日控制系统的设计与优化[D];江苏大学;2016年
5 金祝岭;两种点聚焦式菲涅尔聚光光伏光热系统设计与实验研究[D];中国科学技术大学;2016年
6 陈毅;静态聚光光伏系统的设计与实验研究[D];哈尔滨工业大学;2016年
7 李琳;CPC型聚光光伏/温差联合发电系统设计[D];东北农业大学;2016年
8 王飞;菲涅尔高倍聚光光伏光热系统研究[D];内蒙古工业大学;2016年
9 秦连伟;V型聚光光伏—光催化水处理系统的实验研究[D];天津大学;2015年
10 辛干超;液浸聚光光伏系统中Ⅲ-Ⅴ族多结太阳电池的性能研究[D];天津大学;2015年
,本文编号:2458620
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2458620.html