聚醚类二氧化碳增稠剂材料的设计、合成与性能研究
[Abstract]:The improvement of oil recovery rate is an urgent need to enhance our country's resource security, improve our energy security and meet the needs of social and economic development. After many years of development, CO _ 2 oil displacement has become one of the most promising three-time oil recovery technology. However, in the process of CO _ 2 oil displacement, since the viscosity of CO _ 2 fluid is too low, CO _ 2 tends to generate "finger-in" to the production well, and no more of the crude oil in the contact reservoir results in a high impact efficiency, and the displacement efficiency of the CO _ 2 is limited. The increase of CO _ 2 fluid viscosity can decrease the ratio of CO _ 2 to crude oil, weaken or even eliminate the viscous fingering phenomenon, and improve the efficiency of CO _ 2 displacement. Therefore, a kind of thickening agent material which can increase the CO _ 2 viscosity and improve the recovery ratio has a far-reaching influence on the oil exploitation. the fluorine-containing polymer and the polysiloxane under the condition of a large amount of co-solvent are the most effective and can obviously thicken the two types of CO _ 2 thickening agents of the CO _ 2, and unfortunately, the two types of polymers limit the practical application of the two types of CO _ 2 thickeners due to environmental and cost problems, Other polymers are not effective in thickening CO _ 2 due to the low solubility in CO _ 2. The purpose of this paper is to design and synthesize a low-cost, environment-friendly non-fluorine polymer which is soluble in CO _ 2 and can effectively thicken the CO _ 2, and provides theoretical and technical support for the practical application of the CO _ 2 thickener material. Polypropylene oxide (PPO) with the best solubility of CO _ 2 in the polyether is firstly used as the base polymer of the pro-CO _ 2, the thickening group is introduced into the PPO by the copolymerization, and the performance of the thickening CO _ 2 is studied; after the thickening of the CO _ 2, the modification method of the polyether is analyzed and studied from the thermodynamics, The introduction of the silicon structural unit into the polyether main chain structure improves the solubility of the material in the CO _ 2; and finally, the modified polyether with the improved CO _ 2 affinity is further thickened and modified so as to achieve better CO _ 2 thickening effect. The propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer were designed and synthesized by using the propylene oxide oligomer (PPO) of the pro-CO _ 2 as the base polymer for the first time, and the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxidized styrene copolymer were designed and synthesized as the CO _ 2 thickening agent. In order to promote the dissolution of the polymer in CO _ 2, we replace the hydroxyl of the anaerobic CO _ 2 with the acetate group of the pro-CO2. The phase behavior of polyether thickener in CO _ 2 was studied by cloud point pressure test system, and the effect of phenyl on the physical and chemical properties of polymer was studied in order to bond the structure and solubility. The effect of thickening group content, spacer and polymer molecular weight on the thickening of CO _ 2 was studied on the basis of the dissolution. The results show that the two kinds of polyether copolymers have a certain thickening effect on CO _ 2. The difficulty in the development of CO _ 2 thickener is that CO _ 2 is a weak solvent, the solubility of high molecular weight materials in CO _ 2 is low, and the development of CO _ 2 thickener is limited. In order to improve the solubility of the polyether in the CO _ 2 and to provide a better dissolution basis for thickening modification after the determination of the ability of the polyether copolymer to thicken the CO _ 2, the modification method of the polyether is analyzed and discussed from the thermodynamics. The main factors that limit the solubility of polyether in CO _ 2 are the unfavorable mixing ratio, which is expected to lower the solubility of polyether, and we introduce the silicon structural unit into the molecular structure of the polyether, and design and synthesize the silicon modified polyether. The results of surface tension and glass transition temperature show that the silicon structural unit can significantly reduce the interaction between the polyether molecules and increase the flexibility of the polyether chain, which is beneficial to the improvement of the mixing and mixing entropy; The phase behavior of the silicon modified polyether in CO _ 2 shows that the silicon structural unit can significantly improve the solubility of the polymer in the CO _ 2. After the comprehensive analysis, we think that the high solubility of the silicon modified polyether in the CO _ 2 is mainly attributed to the reduction of the intermolecular force between the polymer molecules. Based on the above-discussed polyether modification method, we further developed a silicon-modified polyether thickener to achieve a better thickening effect. We use the large volume of heptamethyl trisiloxane as the side group modified polyether, and it is expected that the free base of the polymer can be increased while the action force between the polyether molecules is reduced, the flexibility of the chain is improved, and the dissolution of the polyether in the CO _ 2 is increased. Since the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer are capable of effectively thickening the CO _ 2, we continue to select the phenyl group as the thickening group to be introduced into the silicon-modified polyether of the pro-CO2. Seven-methyl trisiloxane modified polyether thickeners were first designed and synthesized; secondly, the effect of the heptamethyltrisiloxane on the intermolecular force and the chain flexibility of the thickener was studied, and then the phase behavior of the silicon modified polyether thickener in the CO _ 2 was studied. The effect of silicon modified polyether on the thickening of CO _ 2 was studied. The viscosity tests show that the silicon modified polyether thickener can thicken the CO _ 2 to a greater extent.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TE39
【相似文献】
相关期刊论文 前10条
1 潘闯;增稠剂在饮品的作用[J];食品与药品;2005年02期
2 章民交;印花增稠剂的进展[J];上海纺织科技;1982年08期
3 雅亮;;二氧化硅增稠剂[J];精细与专用化学品;1985年21期
4 张文光;;阴离子增稠剂[J];国外纺织技术(化纤、染整、环境保护分册);1986年06期
5 唐沛秋;;乳液增稠剂[J];江苏化工;1986年03期
6 ;经济无害的增稠剂[J];上海化工;1988年05期
7 于清章;;如何选择增稠剂与消泡剂[J];化学建材;1990年05期
8 王勤;无机增稠剂的制备及其应用[J];日用化学工业;1991年04期
9 黄绍和;;新型复合增稠剂[J];化学建材;1991年04期
10 何明溪;非火油增稠剂的合成与应用试验[J];山东轻工业学院学报(自然科学版);1994年03期
相关会议论文 前6条
1 马德华;辛寅昌;;一种新型的水溶性聚合物可应用于压裂液增稠剂[A];油气藏改造压裂酸化技术研讨会会刊[C];2014年
2 胡群巧;袁金亮;傅向东;;环保型印花增稠剂DM-ZC2的开发与应用[A];第四届中国(广东)纺织助剂行业年会论文集[C];2012年
3 马锋玲;刘艳霞;郑银林;王少江;;增稠剂和减水剂对PVA-ECC性能的影响[A];特种混凝土与沥青混凝土新技术及工程应用[C];2012年
4 叶蕾;;钙强化豆奶稳定性研究[A];2009年中国水产学会学术年会论文摘要集[C];2009年
5 倪成涛;张悦;周明;陶忠华;于广慧;;活性染料印花增稠剂FS-165的制备与应用[A];“佶龙杯”第六届全国纺织印花学术研讨会论文集[C];2013年
6 张曦晨;刘金刚;;延展黏度对涂布过程的影响及主要测量方法[A];中国造纸学会第十五届学术年会论文集[C];2012年
相关重要报纸文章 前8条
1 河南南阳理工学院生化工程系 侯振建;增稠剂也有保健功能[N];中国食品报;2010年
2 上海师范大学食品添加剂和配料研究所 胡国华;勿让张悟本的增稠剂谬论蔓延消费者当正确理解增稠剂[N];中国食品报;2010年
3 林宣益;水性涂料用助剂发展概况[N];中国化工报;2005年
4 记者 徐海波;武汉:不少豆浆店在豆浆中添加“豆浆精”[N];新华每日电讯;2011年
5 王新梅 王菁文;简析酱类食品中增稠剂的应用[N];中国食品质量报;2004年
6 彭家泽;增稠剂在酱类食品中的应用[N];中国食品质量报;2003年
7 记者 陆慕寒;瑞士开发环保印花涂料[N];中国纺织报;2005年
8 中国农业大学食品学院 范志红;多喝甜饮料 痛风危险高[N];卫生与生活;2010年
相关博士学位论文 前3条
1 张永飞;聚醚类二氧化碳增稠剂材料的设计、合成与性能研究[D];吉林大学;2017年
2 彭军;新型聚氨酯缔合增稠剂的制备与流变学行为[D];华南理工大学;2014年
3 李青;基于混合多糖增稠剂的天然纤维织物活性干法转移印花[D];苏州大学;2014年
相关硕士学位论文 前10条
1 樊国强;新型耐高温固井增稠剂的研制[D];天津大学;2014年
2 马乃宇;星形聚氨酯缔合型增稠剂[D];安徽大学;2016年
3 王峰;不同疏水尾链聚氨酯缔合增稠剂的制备与性能[D];华南理工大学;2016年
4 黄洲;二氧化碳增稠剂的制备及其压裂性能评价[D];西南石油大学;2017年
5 张海玲;耐盐增稠剂的合成与性能表征[D];苏州大学;2012年
6 张玉芳;耐电解质增稠剂的合成与性能[D];苏州大学;2014年
7 娄光伟;聚醚型聚氨酯增稠剂的合成与性能研究[D];兰州大学;2006年
8 王兴鹏;聚丙烯酸系增稠剂的合成及在纺织中的应用[D];辽宁大学;2011年
9 王光良;耐电解质增稠剂的合成与测试[D];青岛大学;2008年
10 王晨;憎水改性丙烯酸系增稠剂的制备和表征[D];济南大学;2010年
,本文编号:2502220
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2502220.html