当前位置:主页 > 硕博论文 > 工程博士论文 >

基于热诱导与超声改性制备并表征乳清蛋白基3,3’-二吲哚甲烷纳米颗粒

发布时间:2021-01-06 16:08
  作为干酪和干酪素生产过程中产生的重要副产物,乳清蛋白因其含有9种必需氨基酸而被称为是一种完全蛋白质。乳清蛋白具有优异的营养特性,如改善低血压、增强机体免疫力、维护肠道健康、降低胆固醇、促进胰岛素分泌、增强机体对矿物质吸收、抗氧化、抗癌以及抗菌能力等。此外,乳清蛋白也具有蛋白质的功能特性,例如乳化性、增稠性、胶凝性、发泡性以及成膜性等。由于其优异的营养品质和功能特性,乳清蛋白已被广泛应用于食品工业之中。为进一步扩展其在食品领域中的应用,多种物理或化学方法被应用在乳清蛋白改性上面,例如热诱导、酶交联以及化学修饰法等。同时,高压等离子体、高压脉冲电场、伽马射线辐照、高强度超声等新技术的引入对于乳清蛋白的改性研究具有深远的影响。本研究拟通过热诱导或超声诱导方法对乳清蛋白进行改性,在增强乳清蛋白的功能特性,从而提高其潜在应用价值。热诱导改性是目前对乳清蛋白物理改性所采用的最普遍的方法。其改性机理主要由其所含有的β-乳球蛋白的特性导致。简单来说,β-乳球蛋白在特定pH下加热到70°C以上时会使其氢键断裂,三维结构展开,解离成链状分子,并在后续加热过程中通过二硫键相互结合形成三维网络并发生聚集。通过... 

【文章来源】:吉林大学吉林省 211工程院校 985工程院校 教育部直属院校

【文章页数】:162 页

【学位级别】:博士

【文章目录】:
摘要
Abstract
LIST OF ABBREVIATIONS
CHAPTER INTRODUCTION
    1.1 Whey Protein Overview
        1.1.1 Chemical Composition
        1.1.2 Major Whey Proteins
        1.1.3 Nutritional Properties of Whey Protein
        1.1.4 Functional Properties of Whey Proteins
    1.2 Whey Protein-based Nanoparticles Encapsulation of BioactiveCompounds
        1.2.1 Overview of Nanoparticles
        1.2.2 Whey Protein-based Nanoparticles
        1.2.3 Enhancement of Whey Proteins-based Nanoparticles forBioactive Compounds by Thermal or Ultrasound Method
        1.2.4 Advantages of Whey Protein-based Nanoparticles forBioactive Compounds
    1.3 3,3?-Diindolylmethane (DIM)
        1.3.1 Introduction of 3,3?-Diindolylmethane (DIM)
        1.3.2 Role of 3,3′-Diindolylmethane in the Treatment of Castrate-    resistant Prostate Cancer (CRPC) of Human MetastaticProstate Cancer
    1.4 Research Contents
        1.4.1 Significance of the Research
        1.4.2 Research Content
    1.5 Innovation Points
    1.6 Experimental Model
CHAPTER 2 Preparation and Characterization of Whey ProteinIsolate-Dim Nanoparticles
    2.1 Materials and Equipments
        2.1.1 Materials and Reagents
        2.1.2 Instruments and Equipments
    2.2 Methodology
        2.2.1 Nanoparticles Preparation
        2.2.2 Determination of Particle size, Polydispersityindex (PDI) andZeta Potential
        2.2.3 Encapsulation Efficiency (EE)
        2.2.4 Differential Scanning Calorimetry (DSC)
        2.2.5 Determination of Rheological Properties
        2.2.6 Fourier Transform Infrared Spectroscopy (FT-IR)
        2.2.7 Transmission Electron Microscopy (TEM) Analysis
        2.2.8 The Influence of Encapsulation on Stability of DIM
        2.2.9 Experimental Design
    2.3 Results and Discussion
        2.3.1 Physicochemical Determination of DIM-encapsulated WPINanoparticles
        2.3.2 Thermal Properties of the DIM-encapsulated WPI Nanoparticles
        2.3.3 Rheological Properties of the DIM-encapsulated WPINanoparticles
        2.3.4 Fourier Transform Infrared Spectroscopy (FT-IR)
        2.3.5 Transmission Electron Microscopy (TEM)
        2.3.6 Photochemical Stability
        2.3.7 Impact of pH
    2.4 Conclusions
CHAPTER 3 Physicochemical and Microstructural Properties of     Polymerized Whey Protein Concentrate Encapsulated3, 3?-Diindolylmethane Nanoparticles
    3.1 Materials and Equipments
        3.1.1 Materials and Reagents
        3.1.2 Instruments and Equipments
    3.2 Methodology
        3.2.1 Sample Preparation
        3.2.2 Particle Size and Zeta potential Measurement
        3.2.3 Rheological Determinations
        3.2.4 Fourier Transform Infrared (FTIR) Spectra Analysis
        3.2.5 Transmission Electron Microscopy (TEM) Analysis
        3.2.6 Storage Stability Analysis
        3.2.7 Statistical Analysis
    3.3 Results and Discussion
        3.3.1 Particle Size and Zeta Potential of PWP–DIM Nanoparticles
        3.3.2 Rheological Properties of PWP–DIM Nanoparticles
        3.3.3 FTIR spectra of PWP–DIM Nanoparticles
        3.3.4 Microstructure of PWP–DIM Nanoparticles
        3.3.5 Changes in Color and Absorbance of PWP–DIMNanoparticles During Storage
        3.3.6 Changes in Particle Size and Zeta Potential of PWP–DimNanoparticles During Storage
    3.4 Conclusions
CHAPTER 4 Effect of Ultrasound Treatment on the Physicochemical,Microstructural and Antioxidative Properties of Whey Protein Concentrate Encapsulated 3,3’-Diindolylmethane Nanoparticles
    4.1 Materials and Equipments
        4.1.1 Materials and Reagents
        4.1.2 Instruments and Equipments
    4.2 Methodology
        4.2.1 Preparation of Nanoparticles
        4.2.2 Ultrasound Treatment of WPC–DIM Nanoparticles
        4.2.3 Nanoparticles Characterization
        4.2.4 Encapsulation Efficiency (EE%)
        4.2.5 Rheological Determination
        4.2.6 Color and p H Measurement
        4.2.7 Transmission Electron Microscopy (TEM)
        4.2.8 Freeze Drying
        4.2.9 Differential Scanning Calorimetry (DSC)
        4.2.10 Fourier Transform Infrared Spectroscopy (FT-IR)
        4.2.11 Antioxidant Activity
        4.2.12 Statistical Analyses
    4.3 Results and Discussion
        4.3.1 Effect of Ultrasound Treatment on the Particle Size, PolydispersityIndex (PDI) and Zeta Potential of WPC–DIM Nanoparticles
        4.3.2 Effect of Ultrasound Treatment on the EncapsulationEfficiency (EE%) of WPC–DIM Nanoparticles
        4.3.3 Effect of Ultrasound Treatment on Rheological Properties ofWPC–DIM Nanoparticles
        4.3.4 Effect of Ultrasound Treatment on Color and p H ofWPC–DIM Nanoparticles
        4.3.5 Effect of Ultrasound Treatment on Microstructure ofWPC–DIM Nanoparticles
        4.3.6 Effect of Ultrasound Treatment on Differential ScanningCalorimetry (DSC) of WPC–DIM Nanoparticles
        4.3.7 Effect of Ultrasound Treatment on Fourier Transform Infrared(FT-IR) Spectra of WPC–DIM Nanoparticles
        4.3.8 Effect of Ultrasound Treatment on Antioxidant Activity ofWPC–DIM Nanoparticles
    4.4 Conclusions
CHAPTER 5 Clinical Study on Oral Whey Protein EncapsulatedDIM in Castrate-resistant Metastatic Prostate Cancer
    5.1 Materials and Equipments
        5.1.1 Materials and Reagents
        5.1.2 Instruments and Equipments
    5.2 Methodology
        5.2.1 Patients Selection
        5.2.2 Study Design
        5.2.3 Treatment Protocol
        5.2.4 Quality of Life (QoL)
        5.2.5 Biochemical Assessment
        5.2.6 Statistical Analysis
    5.3 Results and Discussions
        5.3.1 Anthropometric Measurement of the Patients
        5.3.2 Structure of the EORTC QLQ-PR25
        5.3.3 Quality of Life
        5.3.4 Effect of the Intervention on PSA Levels of the Patients
        5.3.5 Medical Events and Side Effects
        5.3.6 Discussion
        5.3.7 Conclusions
CHAPTER 6 CONCLUSIONS
    6.1 Summary
    6.2 Conclusions and Recommendations
LITERATURE CITED
ANNEXURE Ⅰ CONSENT LETTER
ANNEXURE Ⅱ
Self Introduction and the Scientific Research Achievements ObtainedDuring the Doctoral Degree
ACKNOWLEDGEMENTS



本文编号:2960866

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2960866.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户26fb6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com