低速直驱矿用开关磁阻电动机的设计与优化
发布时间:2021-04-01 22:05
矿石粉碎加工设备是矿石加工行业的重要设备,常规的驱动系统一般采用感应电机与减速器结合方式,系统能量效率低下。在节能环保要求日趋严峻的形势下,提升矿石粉碎加工设备系统能量效率已成为亟需解决的重要实际问题。近年来,无减速器的直驱电机系统因其高效和小体积等优点受到研究关注并且得到飞速发展,其中开关磁阻电机具有高效率、高能量输出、高转矩密度和高可靠性的优势,在多个领域作为直驱电机得到了重要应用。本文以矿石加工为应用背景,以矿用雷蒙粉碎机(Raymond Pulverizer)为研究对象,采用开关磁阻电机作为直驱电机的方案。针对低转速、大扭矩带来的系统效率低、转矩脉动大、涡流损耗大和温升较高等突出问题,采用高极槽数的解决方案,重点针对高极槽数开关磁阻电机电磁性能分析理论、机械强度与热力学特性分析方法、磁场解析与损耗计算模型与综合设计方法等方面开展研究工作,最终实现开关磁阻电机直接驱动雷蒙德粉碎机。主要内容包括:(1)在对已有传统矿用雷蒙粉碎机结构特点和运行机理分析的基础上,设计直驱开关磁阻电机的参数,并且针对各个参数对于电机性能影响进行深入研究,给出了低速直驱开关磁阻电机的新拓扑设计。利用有限元...
【文章来源】:大连理工大学辽宁省 211工程院校 985工程院校 教育部直属院校
【文章页数】:185 页
【学位级别】:博士
【文章目录】:
ABSTRACT
摘要
List of Abbreviations and Notations
1 Introduction
1.1 Background, motivation and significance of the study
1.1.1 An overview direct drive system
1.1.2 Raymond pulverizer in mining applications
1.1.3 Direct-drive machines typologies for mining application
1.2 Fundamentals of switched reluctance motor
1.2.1 Structure of switched reluctance motor
1.2.2 Operation principles of switched reluctance motor
1.3 Literature review of switched reluctance motor
1.3.1 Electromagnetic modeling research status of switched reluctance motor
1.3.1.1 Analytical methods
1.3.1.2 Numerical methods
1.3.2 Thermal modeling research status of switched reluctance motor
1.3.3 Enhance the performance of switched reluctance motor
1.3.3.1 Torque ripple reduction
1.3.3.2 Acoustic noise reduction
1.3.3.3 Efficiency improvement
1.3.3.4 Torque density enhancement
1.3.4 Optimization of switched reluctance motor
1.4 Key problems and objectives of the study
1.5 Content and technology routes of thesis
1.5.1 Content of thesis
1.5.2 Technology routes of thesis
2 Design of a switched reluctance motor for low-speed direct-drive mining application
2.1 Design of a switched reluctance motor for low speed
2.1.1 Initial design of a switched reluctance motor
2.1.2 Investigation the parameters of a switched reluctance motor
2.2 Investigation of losses
2.2.1 Stator copper loss
2.2.2 Iron loss
2.2.3 Mechanical loss
2.3 Converter topology and switching angles
2.3.1 Investigation of switching angles
2.4 Simulation results of the switched reluctance motor
2.4.1 Static characteristics of the switched reluctance motor
2.4.2 The loss of the switched reluctance motor
2.4.3 Performance characteristic of the switched reluctance motor
2.5 Summary
3 Optimization based on surrogate models of a switched reluctance motor
3.1 Introduction
3.2 Surrogate modelling
3.2.1 Latin hypercube sampling
3.2.2 Kriging model
3.3 Surrogate model-based optimization(SMBO)
3.3.1 Optimization problem definition of the switched reluctance motor
3.3.2 Sensitivity analysis(SA)
3.3.3 Surrogate model and heuristic search method
3.4 Numerical results and analysis
3.5 Summary
4 Thermal and mechanical analysis of the switched reluctance motor
4.1 Introduction
4.2 Thermal analysis
4.2.1 3D thermal model
4.2.2 The boundary conditions of heat transfer coefficient
4.2.2.1 The effective thermal conductivity of air-gap
4.2.2.2 Equivalent model of stator windings
4.2.2.3 Heat transfer coefficient between external frame and ambient
4.2.2.4 Forced convection coefficient between end winding and end-caps
4.2.2.5 The heat transfer coefficient of water jacket
4.2.3 Computational fluid dynamics analysis for water jacket
4.3 Mechanical analysis
4.3.1 The radial and tangential forces
4.3.2 Modal analysis
4.3.3 Harmonic analysis methods
4.4 Summary
5 Validation of experiment
5.1 Introduction
5.2 Fabrication and assembly of the prototype
5.2.1 Manufacture of the stator core and winding
5.2.2 Manufacture of the rotor core and the shaft
5.3 Drive control system of the switched reluctance motor
5.3.1 The design of system hardware
5.3.1.1 The main control module
5.3.1.2 The power circuit of the converter
5.3.1.3 Drive circuit design
5.3.1.4 Rotor position detection module
5.3.1.5 Current sampling circuit design
5.3.1.6 Voltage sampling circuit design
5.3.2 System software design
5.4 Electromagnetic performance test of the switched reluctance motor
5.5 Thermal performance test of the switched reluctance motor
5.6 The hammer impact test
5.7 The comparison between the proposed motor and the induction motor
5.8 Summary
6 Conclusions and recommendations for future work
6.1 Conclusions
6.2 Abstract of Innovation Points
6.3 Future Research
References
The Appendix A
Published Academic Articles during PhD period
Acknowledgements
Author Information
【参考文献】:
期刊论文
[1]考虑零件寿命相关的风电齿轮箱可靠性分析[J]. 刘波,安宗文. 机械工程学报. 2015(10)
本文编号:3114030
【文章来源】:大连理工大学辽宁省 211工程院校 985工程院校 教育部直属院校
【文章页数】:185 页
【学位级别】:博士
【文章目录】:
ABSTRACT
摘要
List of Abbreviations and Notations
1 Introduction
1.1 Background, motivation and significance of the study
1.1.1 An overview direct drive system
1.1.2 Raymond pulverizer in mining applications
1.1.3 Direct-drive machines typologies for mining application
1.2 Fundamentals of switched reluctance motor
1.2.1 Structure of switched reluctance motor
1.2.2 Operation principles of switched reluctance motor
1.3 Literature review of switched reluctance motor
1.3.1 Electromagnetic modeling research status of switched reluctance motor
1.3.1.1 Analytical methods
1.3.1.2 Numerical methods
1.3.2 Thermal modeling research status of switched reluctance motor
1.3.3 Enhance the performance of switched reluctance motor
1.3.3.1 Torque ripple reduction
1.3.3.2 Acoustic noise reduction
1.3.3.3 Efficiency improvement
1.3.3.4 Torque density enhancement
1.3.4 Optimization of switched reluctance motor
1.4 Key problems and objectives of the study
1.5 Content and technology routes of thesis
1.5.1 Content of thesis
1.5.2 Technology routes of thesis
2 Design of a switched reluctance motor for low-speed direct-drive mining application
2.1 Design of a switched reluctance motor for low speed
2.1.1 Initial design of a switched reluctance motor
2.1.2 Investigation the parameters of a switched reluctance motor
2.2 Investigation of losses
2.2.1 Stator copper loss
2.2.2 Iron loss
2.2.3 Mechanical loss
2.3 Converter topology and switching angles
2.3.1 Investigation of switching angles
2.4 Simulation results of the switched reluctance motor
2.4.1 Static characteristics of the switched reluctance motor
2.4.2 The loss of the switched reluctance motor
2.4.3 Performance characteristic of the switched reluctance motor
2.5 Summary
3 Optimization based on surrogate models of a switched reluctance motor
3.1 Introduction
3.2 Surrogate modelling
3.2.1 Latin hypercube sampling
3.2.2 Kriging model
3.3 Surrogate model-based optimization(SMBO)
3.3.1 Optimization problem definition of the switched reluctance motor
3.3.2 Sensitivity analysis(SA)
3.3.3 Surrogate model and heuristic search method
3.4 Numerical results and analysis
3.5 Summary
4 Thermal and mechanical analysis of the switched reluctance motor
4.1 Introduction
4.2 Thermal analysis
4.2.1 3D thermal model
4.2.2 The boundary conditions of heat transfer coefficient
4.2.2.1 The effective thermal conductivity of air-gap
4.2.2.2 Equivalent model of stator windings
4.2.2.3 Heat transfer coefficient between external frame and ambient
4.2.2.4 Forced convection coefficient between end winding and end-caps
4.2.2.5 The heat transfer coefficient of water jacket
4.2.3 Computational fluid dynamics analysis for water jacket
4.3 Mechanical analysis
4.3.1 The radial and tangential forces
4.3.2 Modal analysis
4.3.3 Harmonic analysis methods
4.4 Summary
5 Validation of experiment
5.1 Introduction
5.2 Fabrication and assembly of the prototype
5.2.1 Manufacture of the stator core and winding
5.2.2 Manufacture of the rotor core and the shaft
5.3 Drive control system of the switched reluctance motor
5.3.1 The design of system hardware
5.3.1.1 The main control module
5.3.1.2 The power circuit of the converter
5.3.1.3 Drive circuit design
5.3.1.4 Rotor position detection module
5.3.1.5 Current sampling circuit design
5.3.1.6 Voltage sampling circuit design
5.3.2 System software design
5.4 Electromagnetic performance test of the switched reluctance motor
5.5 Thermal performance test of the switched reluctance motor
5.6 The hammer impact test
5.7 The comparison between the proposed motor and the induction motor
5.8 Summary
6 Conclusions and recommendations for future work
6.1 Conclusions
6.2 Abstract of Innovation Points
6.3 Future Research
References
The Appendix A
Published Academic Articles during PhD period
Acknowledgements
Author Information
【参考文献】:
期刊论文
[1]考虑零件寿命相关的风电齿轮箱可靠性分析[J]. 刘波,安宗文. 机械工程学报. 2015(10)
本文编号:3114030
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3114030.html