当前位置:主页 > 硕博论文 > 工程博士论文 >

基于葵花籽蛋白水解物美拉德反应产物制备的风味增强剂及其感官特性和抗氧化活性

发布时间:2017-07-30 13:01

  本文关键词:基于葵花籽蛋白水解物美拉德反应产物制备的风味增强剂及其感官特性和抗氧化活性


  更多相关文章: 向日葵肽 糖型 基料类型 温度 美拉德反应产物 厚味效应 偏最小二乘回归 交联产物 抗氧化和抗菌活性


【摘要】:向日葵(Helianthus annuus L.)是种植在世界上最重要的油籽作物之一,相对于油脂产量居全国第四位。脱脂粉是榨油后的主要副产品。这种脱脂粉,约含40-45%的蛋白质,可能是人类获取蛋白质最佳来源。向日葵蛋白质的技术-功能特性可与大豆和其他豆类蛋白相媲美。尽管从营养学的角度来看赖氨酸缺乏是一个主要缺点,但由于它低抗营养化合物和不含有毒物质,葵花籽粕蛋白被认为是一种有价值的食品成分替代物。向日葵蛋白水解物能依次用内切蛋白酶(碱性蛋白酶)和外切蛋白酶(风味蛋白酶)获得,他们能以很高的营养价值被使用于食品行业。另一方面,美拉德反应技术最近已用于进一步改善蛋白质水解产物的物理化学性质以及感官特性。这一研究过程中酶法水解和美拉德反应技术的结合可以进一步提高葵花蛋白的附加值及其在食品行业的利用率。这项研究的第一阶段是酶法制备葵花蛋白水解物的工艺优化。分析表明,葵花籽粕的蛋白质含量为43.66%。在酶解之前,蛋白质含量是通过制备向日葵蛋白分离物提升。向日葵蛋白分离物中的蛋白含量从43.66%上升到72.50%。使用碱性蛋白酶(内肽酶)和复合风味蛋白酶分步酶解生产向日葵蛋白质水解产物的最佳条件是,2小时碱性蛋白酶和2小时复合风味蛋白酶水解足以产生无苦味葵花蛋白水解物。因此,可以得出结论,水解葵花籽粕蛋白质最佳的加工条件如下:碱性蛋白酶[E/S]0.6%(w/w)在58℃,p H值8,2小时和风味蛋白酶[E/S]0.4%(w/w)在50℃下,2小时p H为6.5。在最佳条件下的蛋白质含量提高到92.32%。在研究的下一阶段,对不同类型的糖对向日葵蛋白质水解物的美拉德反应产物(MRPs)的感官特性的影响进行了评价与比较(果糖,葡萄糖,半乳糖,木糖,乳糖,麦芽糖)。结果表明,MRPs的褐变强度,颜色形成和游离及总氨基酸受糖类型和糖类反应活性范围的影响极大。为戊糖己糖双糖。PXC棕色更暗,相比于其他MRPs,FAA和TAA含量更低。然而,肽-木糖-半胱氨酸(PXC)MRPs表现出了极大醇厚味和连续性和更强的肉香味及鲜味,相比于其他类型的糖制成的MRPs。除PGa C外的己糖制得的MRPs,表现出接受性强的醇厚味和连续性,而PLC和PMC和PGa C表现出较高的焦糖味和苦味。据观察,在所有的MRPs中,半胱氨酸的加入加速了高分子量(HMW)的肽降解,同时抑制了低分子量(LMW)肽的交联和颜色的形成。此外,戊糖(木糖)是含硫化合物的前体,所有的单糖相比于双糖是含氮化合物的良好来源。此外,二糖有助于呋喃和含氧化合物的形成。因此得出的结论是向日葵肽,木糖,半胱氨酸模型体系是香味增强剂的一个良好的前体,具有更强的“醇厚味”的效果。本文以向日葵的游离氨基酸和多肽为基料,比较研究了这两种物质的美拉德反应产物(MRPs)的感官特性和抗氧化能力,研究结果表明,AXC具有较浓郁的肉香味和鲜味,而PXC则具有突出的醇厚味和持续感,同时AX和PX表现出了较强的焦糖味和苦味。研究发现,添加半胱氨酸可以促进大分子的肽类降解,同时抑制小分子在PXC和AXC中的交联和颜色的形成。此外,还发现MRPs的感官属性与肽类的大小无显著相关性。结果还表明,焦糖味和苦味与呋喃类和大部分含氮化合物呈显著正相关,而这些化合物与醇厚味、持续感和肉香味则呈现显著负相关。此外,含硫化合物与肉香味呈显著正相关,而PXC和PX较AXC和AX具有更高抗氧化能力。因此,向日葵多肽的MRPs可以作为一种较好的具抗氧化活性的增味剂前体,而向日葵游离氨基酸的MRPs可用于生产肉香味的增味剂。在研究的下一阶段,温度和半胱氨酸的添加对向日葵蛋白质美拉德反应产物的感官特性的影响显示,在120℃下,半胱氨酸添加量(PXC-120)制得的MRPs具有更大的肉香味,醇厚味和连续性相比其他的MRPs。分子量分布表明,随着温度的升高,半胱氨酸的存在抑制了低分子量(LMW)的肽交联,但加速了高分子量(HMW)的肽降解。此外,结果显示,分子大于5 k Da的肽对PXCs的感官属性显著负相关,而分子量1至5 k Da的肽对PX感官属性呈正相关但不显著。含硫化合物对PXCs的感官属性呈显著正相关性,而含氮化合物和呋喃是对PXCs的感官属性显著负相关。在接下来的研究中,比较评价了向日葵的蛋白水解物-木糖-L-半胱氨酸模式体系(PXC)的美拉德产物(MRPs),与大豆美拉德产物(MSP)的感官属性和抗氧化能力。结果表明,PXC表现出较强的抗氧化作用(p0.001),还原能力和DPPH自由基清除活性高于MSP(分别为在3mg/m L时,0.689比0.667,和在1mg/m L时,95.06%比90.73%)。此外,感官属性表明,与MSP相比,PXC具有较强的醇厚味和持续感,这是由于MSP中1-5k Da分子量的美拉德肽的含量更高(18.05%比16.01%),同时也具有硫取代呋喃产生的肉香味以及较好的整体可接受性。因此,向日葵的MRPs可以作为大豆的MRPs替代物,用于生产具有高抗氧化活性的增味剂。在进一步的研究中,考察了交联产物在增味剂加工过程中的贡献。向日葵肽、玉米肽和大豆肽(SFP、CP、SP)被用于制备美拉德体系,分别名为PXC、MCP和MSP。研究显示,所有的感官属性都具有显著性差异,醇厚味和持续感得分最高的都在美拉德肽含量(1-5k Da)最低的MCP体系中。这个结果表明,与其它MRPs相比,美拉德肽含量最低的MCP体系,具有最强的“厚味效应”,这证明了MRPs的“厚味效应”不仅限与由分子量大小(1-5k Da)定义的“美拉德肽”的相关。对酶解后的PXC分馏物进行感官评价,结果显示,在PXC、P-PXC和它们的水解产物之间不存在显著性差异。因此这项观察结果证实了以上成分对“厚味”效应的贡献,推测不水解的交联产物可能有助于MRPs产生“厚味”效应。提出了四种可能的交联化合物的结构,这些研究结果提供了关于木糖、半胱氨酸和向日葵肽MRPs感官特性的新见解。本研究的最后一部分,是研究关于向日葵作为天然的抗油氧化剂,在鱼油和橄榄油纳米乳中的应用,研究的条件为将O/W型的纳米乳液储存与于40°C的加速条件下4周。结果表明,在经过美拉德反应后,向日葵蛋白水解物的抗氧化和抗菌活性都得到了提升。纳米乳的表征结果表明,在40°C的条件下储存28天,橄榄油的O/W型纳米乳比于鱼油的O/W型纳米乳更稳定。将向日葵作为天然抗氧化剂应用于O/W型纳米乳,结果显示在储存28天后,与BHT相比,450 mg/100m L浓度的PXC足以抑制对鱼油和橄榄油的初级和次级氧化。由此得出结论,向日葵蛋白水解产物的MRPs可作为一种天然抗氧化剂用于抑制油脂氧化。
【关键词】:向日葵肽 糖型 基料类型 温度 美拉德反应产物 厚味效应 偏最小二乘回归 交联产物 抗氧化和抗菌活性
【学位授予单位】:江南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TS201.2
【目录】:
  • Dedication4-10
  • List of Abbreviations10-13
  • 摘要13-16
  • Abstract16-28
  • Chapter 1. Introduction and Review of Relevant Literature28-54
  • 1.1. Sunflower28-31
  • 1.1.1. Food applications of sunflower seed28-29
  • 1.1.2. By-products from processing of sunflower oil29
  • 1.1.3. Composition of Sunflower meal (SFM)29-30
  • 1.1.4. Sunflower protein hydrolysates30-31
  • 1.2. Maillard reaction31-42
  • 1.2.1. Impact of Maillard on food quality32
  • 1.2.2. Formation of flavour compounds in the Maillard reaction32-34
  • 1.2.3. Classification of flavour compounds from Maillard reaction34-35
  • 1.2.4. Factors influencing the flavour formation during Maillard reaction35-39
  • 1.2.5. Analysis of flavours39-40
  • 1.2.6. Application of Maillard reaction products in food industries40-42
  • 1.3. Statement of the problem and justification of research42-43
  • 1.4. Objectives of the study43
  • 1.4.1. Main objective of the study43
  • 1.4.2. Specific objectives of the study43
  • 1.5. References43-54
  • Chapter 2. Optimization of Processing Parameters for Enzymatic Hydrolysis of SunflowerProteins54-65
  • 2.1. Introduction54-55
  • 2.2. Material and Methods55-57
  • 2.2.1. Plant material55
  • 2.2.2. Chemicals55
  • 2.2.3. Preparation of sunflower protein isolate55
  • 2.2.4. Physico-chemical analysis methods55-56
  • 2.2.5. Total and free amino acid determination56-57
  • 2.2.6. Estimation of molecular weight distribution57
  • 2.2.7. Statistical analysis57
  • 2.3. Results and Discussions57-62
  • 2.3.1. Proximate analysis57-58
  • 2.3.2. Effect of alcalase concentration on the degree of hydrolysis58
  • 2.3.3. Effect of hydrolysis time and substrates concentration on the degree of hydrolysis58-59
  • 2.3.4. Effect of alcalase enzyme hydrolysis and substrates concentration of molecular weightdistribution59
  • 2.3.5. Effect of alcalase hydrolysis and substrates concentration on total amino acid content ofsunflower protein hydrolysates59-60
  • 2.3.6. Effect of alcalase hydrolysis and substrates concentration on total amino acid content ofsunflower protein hydrolysates60
  • 2.3.7. Effect of sequential enzymatic hydrolysis and substrates concentration on DH and molecularweight distribution60-62
  • 2.4. Conclusion62-63
  • 2.5. References63-65
  • Chapter 3. Sensory Characteristics of Maillard Reaction Products Obtained from SunflowerProtein Hydrolysates and Different Sugar Type65-91
  • 3.1. Introduction65-66
  • 3.2. MATERIALS and Methods66-70
  • 3.2.1. Plant material66
  • 3.2.2. Chemicals66-67
  • 3.2.3. Preparation of sunflower protein isolate67
  • 3.2.4. Preparation of sunflower hydrolysates67
  • 3.2.5. Preparation of Maillard reaction products67
  • 3.2.6. Measurement of p H67
  • 3.2.7. Measurement of browning intensity67
  • 3.2.8. Colour measurement67-68
  • 3.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis68
  • 3.2.10. Total and free amino acid determination68
  • 3.2.11. Estimation of molecular weight distribution68-69
  • 3.2.12. Sensory evaluation69
  • 3.2.13. Statistical analysis69-70
  • 3.3. Result and discussions70-85
  • 3.3.1. Effect of sugar types on MRPs p H70-71
  • 3.3.2. Effect of sugar types on MRPs browning intensity and colour development71
  • 3.3.3. Effect of sugar types on Molecular Weight Distribution of MRPs71-73
  • 3.3.4. Effect of sugar types on MRPs free and total amino acid content73-75
  • 3.3.5. Effect of sugar types on volatile compounds formation75-79
  • 3.3.6. Effect of sugar types on MRPs sensory characteristics79-85
  • 3.4. Conclusion85-86
  • 3.5. References86-91
  • Chapter 4 Effect of Substrate Type on Sensory Characteristics and Antioxidant Capacity of Sunflower Maillard Reaction Products91-120
  • 4.1. Introduction91-92
  • 4.2. Materials and Methods92-95
  • 4.2.1. Plant material92
  • 4.2.2. Chemicals92-93
  • 4.2.3. Preparation of sunflower protein isolate93
  • 4.2.4. Preparation of sunflower hydrolysates93
  • 4.2.5. Preparation of sunflower free amino acid93
  • 4.2.6. Preparation of Maillard reaction products93
  • 4.2.7. Measurement of browning intensity93
  • 4.2.8. Colour measurement93-94
  • 4.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis94
  • 4.2.10. Total and free amino acid determination94
  • 4.2.11. Estimation of molecular weight distribution94
  • 4.2.12. Determination of DPPH radical-scavenging activity94
  • 4.2.13. Determination of the reducing power94-95
  • 4.2.14. Sensory evaluation95
  • 4.2.15. Statistical analysis95
  • 4.3. Results and Discussions95-114
  • 4.3.1. Browning intensity and colour changes95-96
  • 4.3.2. Change in Molecular Weight Distribution96-97
  • 4.3.3. Change in Amino Acid Content97-99
  • 4.3.4. Sensory analysis99-101
  • 4.3.5. Compare volatile compounds of MRPs101-108
  • 4.3.6. Relationship between Molecular weight, volatile compounds and sensory characteristics108-113
  • 4.3.7. Evaluation of antioxidant activity113-114
  • 4.4. Conclusions114-115
  • 4.5. References115-120
  • Chapter 5. Temperature and Cysteine Addition Effect on Formation of Sunflower Hydrolysate Maillard Reaction Products and Corresponding Influence on Sensory Characteristics Assessedby Partial Least Square Regression120-152
  • 5.1. Introduction120-122
  • 5.2. Materials and Methods122-125
  • 5.2.1. Plant material122
  • 5.2.2. Chemicals122
  • 5.2.3. Preparation of sunflower isolates and hydrolysates122
  • 5.2.4. Preparation of Maillard reaction products122-123
  • 5.2.5. Measurement of p H123
  • 5.2.6. Measurement of browning intensity123
  • 5.2.7. Chlorogenic acid determination123-124
  • 5.2.8. Colour measurement124
  • 5.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis124
  • 5.2.10. Total and free amino acid determination124
  • 5.2.11. Estimation of molecular weight distribution124
  • 5.2.12. Determination of DPPH radical-scavenging activity124
  • 5.2.13. Determination of the reducing power124-125
  • 5.2.14. Sensory evaluation125
  • 5.2.15. Statistical analysis125
  • 5.3. Results and Discussions125-147
  • 5.3.1. Change in p H125-126
  • 5.3.2. Chlorogenic acid content126
  • 5.3.3. Effect on browning and lightness intensity of MRPs126-127
  • 5.3.4. Peptide content127-129
  • 5.3.5. Amino acid content129-130
  • 5.3.6. Volatile compound formation130-132
  • 5.3.7. Sensory evaluation132-133
  • 5.3.8. Relationship between molecular weight, free amino acid, flavour compounds and sensorycharacteristics133-139
  • 5.3.9. Effect of temperature and cysteine addition on antioxidant activity139-147
  • 5.4. Conclusions147
  • 5.5. References147-152
  • Chapter 6. Sensory Attributes and Antioxidant Capacity of Maillard Reaction ProductsDerived from Xylose, Cysteine and Sunflower Protein Hydrolysate Model System152-174
  • 6.1. Introduction152-153
  • 6.2. Materials and Methods153-156
  • 6.2.1. Plant material153
  • 6.2.2. Chemicals153-154
  • 6.2.3. Preparation of sunflower isolates and hydrolysates154
  • 6.2.4. Preparation of soybean hydrolysates154
  • 6.2.5. Preparation of Maillard reaction products154
  • 6.2.6. Measurement of p H154-155
  • 6.2.7. Measurement of browning intensity155
  • 6.2.8. Chlorogenic acid determination155
  • 6.2.9. Colour measurement155
  • 6.2.10. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis155
  • 6.2.11. Total and free amino acid determination155
  • 6.2.12. Estimation of molecular weight distribution155
  • 6.2.13. Determination of DPPH radical-scavenging activity155
  • 6.2.14. Determination of the reducing power155
  • 6.2.15. Sensory evaluation155
  • 6.2.16. Statistical analysis155-156
  • 6.3. Results and discussions156-167
  • 6.3.1. Change in p H156
  • 6.3.2. Change of chlorogenic acid156
  • 6.3.3. Change in MW distribution of MRPs156-157
  • 6.3.4. Changes in colour characteristics of MRPs157-158
  • 6.3.5. Change in amino acid content158-159
  • 6.3.6. Sensory evaluation159-161
  • 6.3.7. Comparison of Volatile compounds of MRPs161-164
  • 6.3.8. Comparison of antioxidant activity164-167
  • 6.4. Conclusion167-168
  • 6.5. References168-174
  • Chapter 7. Contribution of Crosslinking Products to the Flavour Enhancer Processing: The New Concept of Maillard Peptide in Sensory Characteristics of Maillard Reaction Systems174-193
  • 7.1. Introduction174-175
  • 7.2. Materials and Methods175-178
  • 7.2.1. Plant material175
  • 7.2.2. Chemicals175-176
  • 7.2.3. Preparation of Maillard reaction products176
  • 7.2.4. Gel Permeation Chromatography (GPC)176
  • 7.2.5. Hydrolysis of PXC and P-PXC176
  • 7.2.6. Total and free amino acid determination176
  • 7.2.7. Estimation of molecular weight distribution176-177
  • 7.2.8. MALDI-TOF/TOF mass spectrometry177
  • 7.2.9. Comparative taste of MRPs from different peptide177
  • 7.2.10. Comparative Taste Profile Analysis177
  • 7.2.11. Statistical analysis177-178
  • 7.3. Results and discussions178-190
  • 7.3.1. Comparison of MWD of MRPs from different peptides178
  • 7.3.2. Comparison of amino acid content of MRPs from different peptides178-179
  • 7.3.3. Taste characteristics of MRPs from different peptides179-180
  • 7.3.4. Change in MWD and amino acid composition of PXC, P-PXC and their hydrolysates180-182
  • 7.3.5. Comparative sensory characteristics of PXC, P-PXC and their hydrolysates182-183
  • 7.3.6. Compounds identification on MALDI-TOF/TOF spectrometer183-190
  • 7.4. Conclusion190
  • 7.5. References190-193
  • Chapter 8. Antioxidant and Antibacterial Activity of Sunflower Maillard Reaction Productsand Their Application on Stabilization of Fish and Olive Oil Nanoemulsions193-214
  • 8.1. Introduction193-194
  • 8.2. Materials and Methods194-198
  • 8.2.1. Plant material194
  • 8.2.2. Chemicals194-195
  • 8.2.3. Preparation of sunflower protein isolate and hydrolysates195
  • 8.2.4. Preparation of Maillard reaction products195
  • 8.2.5. Preparation of Nanoemulsion195-196
  • 8.2.6. Evaluation of antioxidant activity of MRPs196
  • 8.2.7. Antibacterial activity of sunflower Maillard reaction196-197
  • 8.2.8. Storage stability of fish and olive oil nanoemulsions197
  • 8.2.9. Determination of oil oxidation stability197-198
  • 8.2.10. Nanoemulsion characterisation198
  • 8.2.11. Statistical analysis198
  • 8.3. Results and discussions198-209
  • 8.3.1. Evaluation of sunflower peptides and its MRPs antioxidant activity198-200
  • 8.3.2. Evaluation of antimicrobial activity of sunflower peptides and its MRPs200-203
  • 8.3.3. Characterization of fish and olive oil O/W nanoemulsion203-206
  • 8.3.4. Effect of PXC antioxidants on oxidative stability of fish and olive oil based nanoemulsions206-209
  • 8.4. Conclusion209
  • 8.5. References209-214
  • General Conclusions214-216
  • Key Innovations216-217
  • Recommendations217-218
  • List of Publications218-219
  • Acknowledgement219-220
  • Appendices220


本文编号:594297

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/594297.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ee08b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com