亲油疏水型海绵和膜基油水分离材料的制备及其性能研究
本文关键词: 吸油材料 油水分离膜 聚氨酯海绵 不锈钢网 尼龙布 出处:《上海大学》2016年博士论文 论文类型:学位论文
【摘要】:随着经济的快速发展,各类溢油事故以及含油污水的排放对水体和生态环境造成的油类污染也随之增加,从而给人类带来的伤害也逐渐加重。为了保护我国及世界的生态环境、防治油污污染,开展高效吸油材料及油水分离膜的制备及应用研究具有重要的科研价值和现实意义。优良的吸油材料应具有超疏水超亲油特性、较高的吸油能力、良好的储油效果、吸油后易回收等特点,同时具有良好的回用性和生物可降解性等性能;膜基油水分离材料更应具备高效的油水分离特性。但目前现有吸油材料在吸油能力、材料回用性以及油水分离膜在油水分离效果等方面都存在缺点,这限制了它们的实际应用。因此,针对以上问题,本论文采用聚氨酯海绵和不锈钢网及尼龙布作为基底材料,通过浸涂、接枝等方法对材料进行改性,制备了高效的改性聚氨酯海绵吸油材料和改性不锈钢网及尼龙布油水分离膜,显著提高了吸油材料的吸油能力和油水分离膜的油水分离能力;在对制备的材料进行表征的基础上,对不同改性油水分离材料的各种性能进行了比较,同时分析了材料的经济可行性,并探讨了不同改性吸油材料和油水分离膜的油水分离机理。(1)用聚氨酯(PU)海绵作为基体材料,通过石墨烯进行浸涂改性,制备超疏水超亲油的聚氨酯海绵吸油材料。改性后的海绵材料由原始的超亲水性变为超疏水性(对水的接触角为156.1°),吸油材料吸油性能得到明显提高,可以吸收油品的重量最高约为自身重量的近59倍(58.98 g/g),且吸附速度快,油品的回收和海绵材料的循环利用途径都非常简单快捷,另外,所制备材料的回用次数在保证其对油品的最大吸油倍率不变的情况下可回用60次。(2)用聚氨酯海绵作为基体材料,对石墨烯进行改性,制备涂层更加稳定的超疏水超亲油材料。为了提高聚氨酯海绵在改性后的回用性能,我们先利用γ-甲基丙烯酰氧基三甲氧基硅氧烷(KH-570)对石墨烯进行改性,再利用改性后的石墨烯对海绵进行涂层改性,最终制备出涂层稳定、回用性能强的超疏水吸油材料。研究结果证实改性后的石墨烯涂层海绵后,海绵的吸油性能和疏水性能得到很大提升,其对油品的吸附量最高可约达自身重量的39倍,对水的接触角可高达161°(达到超疏水效果);且改性后海绵的回用次数也显著提高,在保持其最大吸油量的同时,能够通过挤压法回收利用120次以上。(3)利用微纳米氧化锌(ZnO)和棕榈酸(PA)改性制备了具有超疏水超亲油性能的ZnO-PA改性聚氨酯海绵。该改性后海绵可快速吸附实验中不同类型油品,对油品的吸油倍率最高可达41 g/g;其对水的接触角为168.9°,达到了非常高的超疏水性;该涂层在海绵表面的稳定性很好,改性聚氨酯海绵回用次数可达95次以上。(4)以不锈钢网作为膜基材料,制备了具有高效油水分离效果的油水分离膜。实验中采用浸涂和二次结晶的方法将改性二氧化硅纳米颗粒涂层到不锈钢丝网上。研究结果证明,不同尺寸(180、150、75和50μm)的改性不锈钢网虽均未达到超疏水的效果,但其疏水性能都得到很大提高,其中50μm不锈钢网对水的接触角由原始的100.1°提高到135.3°,表现出高度疏水性;且由于纳米二氧化硅颗粒的负载,实验中各种尺寸的不锈钢网的亲油性能也得到明显提升,其中孔径为180μm的不锈钢网对油品的接触角由原始的40.6°降低到0°,达到了超亲油性能。(5)利用尼龙布作为膜基材料,改性制备了超疏水超亲油的油水分离膜。首先利用甲基三氯硅烷对纳米二氧化硅进行改性,然后利用改性二氧化硅纳米颗粒对尼龙布进行表面涂层改性,最终制备出油水分离效果好的油水分离膜。尼龙布由于其自身较强的韧性和机械性能而被用于油水分离膜的研究中,改性后的尼龙布表面粗糙度增加,其对水的接触角可达150.3°;且在油水分离过程中也不需要外力的添加,油品就可以迅速透过改性后的尼龙布,而水被阻挡在尼龙布外面,从而达到油水分离的效果。(6)对海绵和膜基油水分离材料的性能进行比较分析的同时,对其经济可行性和油水分离机理也进行了分析探讨。根据油水分离材料的市场成本调研,由经济可行性分析可知,海绵基吸油材料中KH-Gr海绵的经济性最好,成本低收益高;膜基油水分离材料中,改性尼龙布的经济性较好,更适用于市场销售及实际应用。通过疏水亲油模型分析表明,油水分离材料的油水分离性能主要取决于物质表面的粗糙度及其表面能。
[Abstract]:With the rapid development of economy, all kinds of oil spill accidents and oily sewage discharge of water and ecological environment caused by oil pollution has increased, which brings about the damage is also gradually increased. In order to protect the ecological environment of our country and the world, the prevention and control of pollution, it has important scientific value and practical significance of preparation and Application Study on the development of high oil absorbing materials and oil separation membrane. Oil absorbing materials should have excellent super hydrophobic properties, high oil absorption capacity, oil well, oil absorption characteristics after the easy recovery and reuse, and has good biodegradability; membrane materials should have more efficient oil-water separation the oil-water separation characteristics. But the existing oil absorbing materials in oil absorption capacity, material recycling and oil-water separation membrane in oil-water separation. There are drawbacks, which limits their Practical application. Therefore, to solve the above problems, this paper adopts polyurethane sponge and stainless steel mesh and nylon cloth as substrate by dip coating, modified materials of grafting method, the preparation of efficient modified polyurethane sponge absorbing material and modified stainless steel mesh and nylon oil-water separation membrane, significantly increased water absorbing capability of oil absorbing materials and oil separation membrane separation; based on characterization of the prepared materials, the performance of different modified oil-water separation materials were compared, and analyzed the material economic feasibility, the oil of different modified oil absorbing materials and oil-water separation membrane separation mechanism and study. (1) (PU) with polyurethane sponge as matrix material, by dip coating by graphene, polyurethane sponge absorbing material preparation of super hydrophobic. The modified sponge material from the original super Pro Water becomes super hydrophobic (the water contact angle of 156.1 degrees), oil absorbing materials absorption performance can be obviously improved, the weight of oil can absorb up to about nearly 59 times its own weight (58.98 g/g), and the adsorption speed, oil recovery and recycling use of the sponge material size is very simple fast, in addition, the prepared material recycling times to guarantee the maximum oil absorbency of oil under the same condition can be reused 60 times. (2) using polyurethane sponge as a substrate material of graphene modified coating preparation more stable super hydrophobic materials. In order to improve the polyurethane the sponge in modified reuse performance, we first use gamma methacryloxypropyl trimethoxy siloxane (KH-570) on graphene modified by graphene modified by the sponge modified, prepared coating stability and reuse performance of super strong Hydrophobic oil absorbing materials. The results confirmed that the modified graphene coated sponge after, sponge absorption properties and hydrophobic properties have been greatly improved, the adsorption capacity of oil up to about 39 times its own weight, the water contact angle can reach 161 degrees (up to super hydrophobic effect) and after modification; sponge the recycling times also increased significantly, while maintaining its maximum absorption at the same time, through the extrusion method of recycling 120 times. (3) the use of micro nano Zinc Oxide (ZnO) and palmitic acid (PA) with super hydrophobic properties of ZnO-PA modified polyurethane sponge was modified by the system. The modified sponge can rapid adsorption experiments on different types of oil, the oil absorption rate of up to 41 g/g; of the water contact angle of 168.9 degrees, reached the super hydrophobic coating is very high; the good stability in the sponge surface, modified polyurethane sponge recycling times More than 95 times. (4) stainless steel mesh as membrane materials, preparation of oil and water has high effect of oil-water separation membrane. Experiments using dip coating method and two crystallization of modified silica nanoparticles coating to the stainless steel wire net. The results proved that different sizes (180150,75 and 50 m) modified stainless steel net although did not reach the super hydrophobic effect, but its hydrophobic properties have been greatly improved, including 50 m stainless steel net contact angles of water by the original 100.1 degrees to 135.3 degrees, showing high hydrophobicity; and because the nano silica particles two, various sizes in the experiment of stainless steel net oil performance has also been significantly improved, the pore diameter of 180 m stainless steel net oil contact angle by the original 40.6 degrees down to 0 degrees, reached superoleophilic properties. (5) the use of nylon cloth as the membrane material, modified to prepare Water super hydrophobic membrane. The three methyl chlorosilane of nano silica was modified, and then use the modified silica nanoparticles on the nylon fabric surface coating modification, the final preparation of the oil-water oil-water separation effect good separation membrane. The nylon cloth due to its strong toughness and mechanical properties. Is used to study the oil-water separation membrane, modified nylon cloth after the surface roughness increases, the contact angle to water can reach 150.3 DEG; and in the oil-water separation process does not need to add external oil, you can quickly through the modified nylon cloth, nylon cloth and water is blocked in the outside. In order to achieve the oil-water separation effect. (6) the performance of sponge and membrane based oil-water separation material is analyzed. At the same time, the economic feasibility and the oil-water separation mechanism was also discussed. According to the oil-water separation material The cost of market research, from the analysis of economic feasibility, economy of base oil absorbing materials KH-Gr sponge sponge is best, high cost and low income; membrane based water separation materials, economy of modified nylon cloth is better, more suitable for the market sales and practical application. Through hydrophobic model analysis showed that the performance of oil-water separation of oil and water the separation of materials depends on the material surface roughness and surface energy.
【学位授予单位】:上海大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X55
【相似文献】
相关期刊论文 前10条
1 陈颂阳;魏从达;吴奇霖;许晶禹;;管道式油水分离系统分离特性研究[J];水动力学研究与进展A辑;2013年06期
2 陈彬;刘阁;张贤明;陈立功;;真空环境中油水分离的试验研究[J];实验力学;2013年06期
3 岳桦;油水分离系统[J];国外科技动态;1998年08期
4 f永强;樊静波;;餐厨废弃物油脂提取技术的研究[J];河南科技;2013年21期
5 姚方;;SO—2000型刮油机油水分离系统的设计[J];科技情报开发与经济;2007年04期
6 卓沁;油水分离机[J];今日科技;1997年06期
7 孙玉华,邓凡良,周玉国,刘艳明;联合站油水分离过程动态数学模型[J];大庆石油学院学报;1998年02期
8 冯琼瑶;;油水分离汤勺[J];科学24小时;2008年06期
9 凌国平;油水分离旋流器内部流场的数值模拟[J];苏州大学学报(自然科学);1995年01期
10 ;[J];;年期
相关会议论文 前6条
1 史仕荧;吴应湘;许晶禹;刘敏;罗昌华;王胜;;导流片型管道式分离器油水分离结构优化[A];第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集——E工业流体力学[C];2014年
2 王珂伟;;基于膜技术进行油水分离过程特性研究[A];中国机械工程学会摩擦学分会润滑技术专业委员会第九届(温州)学术年会论文集[C];2004年
3 张鹏;;现代油水分离技术[A];2003年11省区市机械工程学会学术会议论文集[C];2003年
4 蔡文斌;薄启炜;李兆敏;;井下油水分离旋流器室内实验研究[A];第二十届全国水动力学研讨会文集[C];2007年
5 强光初;;论表面工程行业的油水分离[A];2002北京电镀行业清洁生产研讨会论文集[C];2002年
6 李琳;刘兆阅;;具有光催化自清洁和水下超疏油性质的油水分离膜[A];中国化学会第29届学术年会摘要集——第21分会:光化学[C];2014年
相关重要报纸文章 前7条
1 记者 朱斌斌;我市企业攻克油水分离难题[N];舟山日报;2011年
2 唐晓伟 张永琴;哈工程大发明高效油水分离装置[N];中国船舶报;2013年
3 本报通讯员 戴敬凯 见习记者 杨涛利;发现油水分离新材料[N];中国环境报;2013年
4 记者 李泳沩;油水分离技术研制成功[N];吉林日报;2009年
5 李明泰邋赵亮;井下油水分离技术攻关获重大突破[N];中国石化报;2007年
6 记者 马昭 实习生 杨问侠;油水分离装置未安装到位吊销营业执照[N];西安日报;2010年
7 科信;新型油水分离网膜材料研制成功[N];中国化工报;2004年
相关博士学位论文 前2条
1 李辈辈;亲油疏水型海绵和膜基油水分离材料的制备及其性能研究[D];上海大学;2016年
2 徐桂龙;疏水亲油有机无机复合乳液的制备及其在油水分离滤纸的应用研究[D];华南理工大学;2011年
相关硕士学位论文 前10条
1 蒋约林;环境响应型纺织基吸附材料用于高效油水分离的研究[D];浙江理工大学;2016年
2 刘灿;超浸润油水分离材料的制备及其性能研究[D];江苏大学;2016年
3 高晓佳;柔性二硫化钼海绵的制备及其油水分离和吸附性能研究[D];湘潭大学;2016年
4 李东霖;油水分离功能化表面的制备与性能研究[D];北京化工大学;2016年
5 高琳;超浸润多孔金属材料油水分离特性及耐久性研究[D];东南大学;2016年
6 秦福涛;超疏水分离膜的制备与油水分离应用研究[D];大连理工大学;2009年
7 李冲;铜基底特殊浸润性双向油水分离膜的制备及应用[D];哈尔滨工业大学;2015年
8 陈文征;波纹板油水分离技术研究[D];中国石油大学;2008年
9 陆启富;超疏水膜油水分离装置的设计与实验研究[D];大连理工大学;2011年
10 丁德智;新型油水分离装置的研制[D];大连海事大学;2003年
,本文编号:1517762
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1517762.html