耗散Boussinesq方程定解问题的适定性
发布时间:2018-04-15 07:29
本文选题:耗散Boussinesq方程 + 初值问题 ; 参考:《郑州大学》2017年博士论文
【摘要】:本文主要研究耗散Boussinesq方程,utt—△u + △2u—γ△ut + β△2ut + △f(u)=,0(1)的初值问题和初边值问题解的整体存在性、唯一性、衰减性质、渐近性、有限时间爆破性质及耗散项-△u1和△2ut对解的正则性和衰减性质的影响,其中γ ≥ 0和β ≥0为常数满足γ + β0.首先,本文讨论方程(1)的初值问题,证明了解的整体存在性和唯一性,给出解在有限时间爆破的充分/充分必要条件,在初值充分小的条件下建立了解的渐近profile和最优衰减估计.利用能量法建立基本解在Fourier空间中的逐点估计,由此利用高低频分解技术建立解算子的时空估计.进一步运用压缩映射原理证明了局部解在能量空间C([0,T];H1(Rn))中的存在唯一性及解关于时间的连续延拓性质.接着分别讨论了三种不同初始能量(E(0))状态下解的整体存在性和不存在性:(i)次临界初始能量(E(0))(ii)临界初始能量(E(0)=d);(iii)超临界初始能量(E(0)dd,dd是位势井深度).在次临界初始能量条件下利用位势井理论和凸性方法分别给出整体解存在和不存在的充分必要条件.对于临界初始能量状态,利用逼近的方法给出了解整体存在和在有限时间发生爆破的充分条件.超临界初始能量的情况较为复杂和有趣,本文通过构造适当的泛函给出了解整体存在和不存在的充分条件.最后我们利用基本解在Fourier空间中的逐点估计及高低频分解技术建立解算子在Sobolev空间Hk和L∞中的估计,以此研究方程(1)相应的线性问题解的渐近profile进而得到了解的最优衰减估计给出最优衰减率.利用压缩不动点定理建立方程(1)小初值解在空间C([0,T];Hs(Rn))中的整体存在性和唯一性及解的最优衰减估计,其中 sn/2-2.其次,本文研究方程(1)的初边值问题,包括Hinged边界条件和Dirichlet边界条件,证明了解的存在性、唯一性、衰减估计、有限时间爆破和长时间渐近行为.首先研究方程(1)在Hinged边界条件下解的整体存在性和不存在性、解的唯一性、整体解的衰减性质、长时间渐近行为.主要使用紧性方法证明解的局部适定性,由连续性原理给出解关于时间的连续延拓性质.当非线性项为汇时建立整体解的指数衰减估计.当非线性项为源项时,利用位势井理论和凸性方法分别证明了E(0)d时解整体存在和在有限时间发生爆破的充分必要条件,当整体解存在时给出了解的指数衰减性质.对于E(0)=d和E(0)d的情况,给出了解整体存在和不存在的充分条件,整体解存在时证明了当时间趋于无穷时解趋于稳态解.其次讨论了 Hinged边界条件下解的长时间渐近行为,利用拟稳定方法证明了解的整体吸引子和指数吸引子的存在性.最后我们利用紧性方法研究了在Dirichlet边界条件下解的局部适定性.
[Abstract]:In this paper, we study the global existence, uniqueness, attenuation property, asymptotic behavior of solutions to the initial value problem and the initial boundary value problem for dissipative Boussinesq equation (Utt-u 2u- 纬 ut 尾 2ut FU).The properties of finite time blasting and the effects of dissipative terms u 1 and 2ut on the regularity and attenuation properties of the solution, where 纬 鈮,
本文编号:1753121
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1753121.html