导电聚吡咯生物活性界面构建及用于细胞行为的阻抗谱检测—朝向细胞电子学

发布时间:2018-05-07 08:24

  本文选题:聚吡咯 + 电化学阻抗谱 ; 参考:《重庆医科大学》2016年博士论文


【摘要】:本项目提出的“细胞电子学”借鉴于Joseph Wang于1999年提出的“基因电子学”(genoelectronics)一词。“基因电子学”用于描述DNA分子生物识别系统与电子系统间的耦合界面,目的在于将DNA特异性识别反应直接转换为电信号。本项目提出的“细胞电子学”在于期望构建出活细胞生物系统与电子系统间的耦合界面,实现细胞生物系统和电子系统间信号双向传递,并用于细胞生物学行为的检测(将细胞状态信息转变为电信号)和细胞生物学行为的调控(外部电学信号控制细胞状态)。由于“细胞电子学”研究涉及众多学科领域,如材料学、电子学、细胞生物学、表面物理化学等,因此研究充满挑战和期许。聚吡咯,一种新型共轭性导电聚合物材料,为细胞电子学研究提供了契机。一方面聚吡咯能够提供生物活性的表面以支持贴壁性细胞粘附与增殖,另一方面聚吡咯作为优良的“分子导线”将电子学系统与细胞生物学系统相连接。在此基础上,本论文工作集中在利用聚吡咯的掺杂机制构建具有不同性能的细胞生物学系统-电子学检测系统间的耦合界面,以此实现对细胞生物学行为的调控并将细胞生物行为学信息单向转化为电子阻抗学信息,并进一步构建出细胞阻抗生物传感器实现细胞生物学行为检测,为未来发展细胞电子学发展舔砖加瓦。为此,我们做了以下四个方面的研究工作:(1)设计了一种基于感光干膜-铟锡氧化物(Dry film photoresist-indium tin oxide,DFP-ITO)的简易细胞-阻抗谱电子检测系统耦合界面实现细胞生物行为学信息检测。我们发现:不同直径DFP-ITO电极具有相似的阻抗特性;充分固化的感光干膜表面适宜A549细胞粘附且无明显的细胞毒性;基于DFP-ITO电极耦合界面构建的细胞阻抗传感器能够通过阻抗谱技术能够解析A549细胞粘附、增殖过程中的细胞质膜电容、细胞-细胞间隙电阻、细胞-ITO电极间隙电阻变化。(2)在铟锡氧化物(ITO)微电极表面通过电化学循环伏安技术电沉积聚吡咯(PPy)膜制备PPy-ITO微电极,并以此为细胞-阻抗谱电子检测系统耦合界面实现细胞生物行为学信息检测。结果表明:与裸ITO微电极相比,最优参数制备的PPy-ITO微电极(电沉积5个循环数)具有更优的电阻抗性质和细胞生物相容性。基于PPy-ITO微电极耦合界面的细胞阻抗生物传感器能够解析A549细胞粘附增殖及上皮间充质转变(EMT)过程中细胞质膜电容、细胞-细胞间隙电阻、细胞-聚吡咯膜间隙电阻变化检测。(3)构建一种基于氧化石墨烯/聚吡咯-铟锡氧化物(Graphene oxide/polypyrrole-Indium Tin Oxide,GO/PPy-ITO)微电极的细胞阻抗生物传感器并用于细胞粘附增殖行为学检测。结果显示:ITO微电极表面上电沉积的GO/PPy纳米复合物表面平整,分布大量的微孔结构;电化学实验结果显示GO/PPy-ITO微电极比裸ITO微电极具有更低的阻抗特征和更高的电化学活性;GO/PPy比纯PPy膜更能促进A549细胞粘附、铺展和增殖;GO/PPy-ITO微电极表面A549细胞的粘附增殖行为改变电极系统的阻抗谱特征,通过对阻抗谱数据进行等效电路拟合分析获得细胞粘附增殖行为学信息。(4)构建一种基于聚吡咯/RGD-铟锡氧化物(PPy/RGD-ITO)微电极的细胞阻抗生物传感器用于细胞增殖和细胞毒性检测。结果表明:相比ITO电极和PPy/PSS膜,PPy/RGD膜更能促进A549细胞的铺展、粘附和增殖。基于PPy/RGD-ITO微电极构建的细胞阻抗生物传感器一方面可解析细胞增殖过程中细胞质膜电容、细胞-细胞间隙电阻、细胞-聚吡咯膜间隙电阻变化,另一方面可定量分析重楼皂苷I的浓度与细胞毒性间的关系。
[Abstract]:The "cell Electronics" proposed in this project is borrowed in view of the word "genoelectronics" (genoelectronics), proposed by Joseph Wang in 1999. "Gene Electronics" is used to describe the coupling interface between the DNA molecular biometric system and the electronic system. The purpose is to convert the specific recognition reaction of DNA to the electrical signal directly. "Cell Electronics" is expected to build the coupling interface between the living cell biological system and the electronic system, realize the two-way signal transmission between the cell biological system and the electronic system, and use the detection of cell biological behavior (transforming the cell state information into the electrical signal) and the regulation of cell biological behavior (external electrical signal control is fine. The research is full of challenges and expectations, such as materials, electronics, cell biology, surface physical chemistry, and so on. Polypyrrole, a new type of conjugated conductive polymer material, provides an opportunity for cell electronics research. On the one hand polypyrrole can provide biological activity. On the other hand, polypyrrole, as an excellent "molecular wire", connects the electronic system with the cell biological system. On the basis of this, this work focuses on the construction of a cell biological system - electronic detection system with different properties by the doping mechanism of polypyrrole. The coupling interface is used to control the biological behavior of cells and transform the cellular biobehavioral information into electronic impedance information, and the cell impedance biosensors are further constructed to detect cell biological behavior, and the future development of cell electronics to lick brick tiles. For this reason, we have done the following four aspects The research work: (1) a simple cell impedance spectrum electronic detection system based on Dry film photoresist-indium tin oxide (DFP-ITO) was designed to detect cell biobehavioral information detection. We found that different diameters of DFP-ITO electrodes have similar impedance characteristics and fully solidified photosensitivity. The dry membrane surface is suitable for A549 cell adhesion and no obvious cytotoxicity; the cell impedance sensor based on the DFP-ITO electrode coupling interface can be able to analyze the adhesion of A549 cells by impedance spectroscopy, cell membrane capacitance, cell space resistance, and cell -ITO electrode gap resistance change in the proliferation process. (2) indium tin oxide ( ITO) the microelectrode surface is prepared by electrodeposition of Electrodeposited polypyrrole (PPy) membrane by electrochemical cyclic voltammetry. In addition, the cell biobehavioral information detection is realized by the coupling interface of the cell impedance spectrum electronic detection system. The results show that the PPy-ITO microelectrode prepared by the optimal parameter (5 cycles of electrodeposition) is compared with the bare ITO microelectrode. The cell impedance biosensor based on the PPy-ITO microelectrode coupling interface can analyze the cell membrane capacitance, cell space resistance, cell polypyrrole gap resistance change detection in the process of A549 cell adhesion and proliferation and EMT, and (3) construct a base The cell impedance biosensor of Graphene oxide/polypyrrole-Indium Tin Oxide (GO/PPy-ITO) microelectrode was used to detect cell adhesion and proliferation behavior. The results showed that the surface of GO/PPy nanocomposites electrodeposited on the surface of ITO microelectrodes was smooth and a large number of microporous structures were distributed; electrochemistry The experimental results show that the GO/PPy-ITO microelectrode has lower impedance characteristics and higher electrochemical activity than the bare ITO microelectrode; GO/PPy can promote A549 cell adhesion, spread and proliferation more than pure PPy membrane, and the adhesion and proliferation behavior of A549 cells on the GO/PPy-ITO microelectrode surface changes the impedance spectrum characteristics of the electrode system, and the impedance spectrum data are carried out. Cell adhesion and proliferation behavior information. (4) a cell impedance biosensor based on polypyrrole /RGD- indium tin oxide (PPy/RGD-ITO) microelectrode was constructed for cell proliferation and cytotoxicity detection. The results showed that the PPy/RGD membrane could promote the spreading, adhesion and increase of A549 cells compared to the ITO and PPy/PSS membranes. On the one hand, the cell impedance biosensor based on PPy/RGD-ITO microelectrode can analyze the cell membrane capacitance, cell space resistance, cell polypyrrole membrane gap resistance change during cell proliferation and the relationship between the concentration of I and cytotoxicity.

【学位授予单位】:重庆医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q2-33

【相似文献】

相关期刊论文 前10条

1 王杰;徐友龙;陈曦;杜显锋;李喜飞;;电化学法制备高密度导电聚吡咯的性能研究[J];物理学报;2007年07期

2 容华;;导电聚吡咯[J];世界研究与开发报导;1989年04期

3 吴林友;刘尚长;王铁杰;于保强;高扬;;新型的过渡金属聚吡咯配合物的合成与催化作用性能的研究 Ⅲ——二氯η-二聚吡咯合铂配合物[J];辽宁大学学报(自然科学版);1990年02期

4 陈国华,,颜文礼;化学法合成导电聚吡咯的研究现状[J];华侨大学学报(自然科学版);1994年02期

5 韩高义;赵华;靳明;;聚丙烯纤维膜为基底的聚吡咯合成及其电容性能研究[J];山西大学学报(自然科学版);2012年02期

6 侯大年;王琴;梁志宏;张文楠;原思国;;聚吡咯复合纤维的合成及吸附病毒性能研究[J];河南科学;2013年09期

7 钱人元;李永舫;;导电聚吡咯[J];科学;1998年03期

8 姜中兴,叶景泉,石闯;聚吡咯有机/无机插层材料的研究[J];武汉大学学报(理学版);2004年04期

9 钱人元,李永舫;导电聚吡咯的研究[J];中国科学基金;1996年03期

10 安颢瑗;任丽;王立新;;磺酸系掺杂剂对聚吡咯结构与导电性能的影响[J];云南大学学报(自然科学版);2005年S3期

相关会议论文 前10条

1 葛晓艳;宋根萍;郭荣;;自身模板法合成聚吡咯空心球[A];中国化学会第27届学术年会第13分会场摘要集[C];2010年

2 宋根萍;郭荣;;微乳液中聚吡咯复合纳米粒子的制备[A];中国化学会第十届胶体与界面化学会议论文摘要集[C];2004年

3 安颢瑗;王立新;任丽;;聚吡咯的化学氧化合成与导电性能研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年

4 陈鹏磊;高鹏;刘鸣华;;交叉排列纳米带阵列的构筑及其在聚吡咯纳米图案构筑上的应用[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年

5 肖红梅;朱路平;付绍云;;三维规整排列聚吡咯空心球的制备及其电性能研究[A];2007年全国高分子学术论文报告会论文摘要集(上册)[C];2007年

6 闫长领;刘t

本文编号:1856178


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1856178.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cabe1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com