中高层大气气辉光谱的探测与研究

发布时间:2018-06-11 16:55

  本文选题:气辉 + 辐射 ; 参考:《中国科学院国家空间科学中心》2016年博士论文


【摘要】:气辉作为中高层大气中重要的光化学现象之一,受来自底部气象活动与外部太阳辐射的共同影响。气辉辐射携带有重要光化和动力学信息,通过气辉辐射观测研究中高层大气化学和物理学性质一直被广泛采用。在2011年11月,我们在河北兴隆(40.39°N,117.58°E)利用光栅光谱仪建立了一套用于大气辐射探测的系统。该观测系统由光谱仪、CCD探测器以及前光学系统和控制软件组成。该系统观测波长范围从~530nm至~1000nm,观测谱段包含原子氧的绿线(557.7 nm)和红线(630 nm),原子钠的双线,O_2(0-1)带,OH的8-3、4-0、5-1、9-4、6-2、7-3、8-4以及3-0带等重要的气辉辐射光谱。通过几年连续观测积累的数据,本文主要进行了以下几个方面的研究工作:1.利用地基观测的OH谱带转动温度与SABER温度的比较对Einstein系数进行了评估,并给出了一套用于OH谱带转动温度计算的统一的最优化Einstein系数比值。OH转动温度被广泛用于对中层顶区域光化学和动力学过程的观测和研究。其中,Einstein系数是计算转动温度的重要参数,而这一参数主要是通过量子力学的从头计算(ab initio)方法计算得到。不同的研究者给出的Einstein系数存在较大差别,从而计算出的转动温度也有所差别。我们利用TIMED卫星上的SABER温度探测与地基OH探测相互独立这一重要特点,开展了Einstein系数的计算。利用OH(9-4,8-3,6-2,5-1,3-0)五个谱带的转动温度与SABER温度进行比较,对5组Einstein系数进行了评估。结果显示,OH转动温度与SABER温度有一致的时间变化;两者的线性相关系数都大于0.72。利用不同的Einstein计算的转动温度与SABER温度之间的偏差不同;对于每一振动能级的温度偏差进行了评估。从结果可以看出,利用任意一组Einstein系数计算的转动温度都有一系统偏差。然而,采用Langhoff等(1986)的Einstein系数计算的转动温度与SABER温度最接近。为了得到一组最优的用于转动温度计算的Einstein系数,我们利用三年的地基OH观测光谱与SABER同时探测的温度开展了统计比较,给出了一组最优的相对Einstein系数的比值。这套比值为全球不同地点OH转动温度探测的比较提供了统一的标准。2.通过地基的O_2和OH气辉观测研究气辉辐射对大气波动的响应。大气波动(包括重力波、潮汐和行星波)对气辉辐射具有显著的调制作用,OH、O_2、O和Na等气辉对大气波动的响应早已被观测到。当波动经过气辉层,强度和温度都会产生扰动,但强度与温度对于波动的响应存在差异,用Krassovsky提出的强度相对扰动与温度相对扰动的比值η来描述。本文利用O_2和OH(6-2)带气辉辐射研究η对不同周期波动响应情况。对于小于12小时周期的波动,O_2的|η|范围大约在1至10之间,随周期增大有增大趋势;OH(6-2)带的|η|在1至10范围之间,对周期没有明显变化。相位差基本上都小于0,即温度扰动要超前于强度扰动。对于大于2日的行星波,O_2的|η|在10-15之间,OH(6-2)的|η|在5-11之间。两种气辉的η相位差都在0附近,只是O_2的略大于0,OH(6-2)的略小于0。通过与模拟结果比较发现,目前的理论还无法完全与观测一致。这是由于气辉辐射对大气波动的响应与辐射产生机制、淬灭过程以及背景大气条件等都密切相关,尤其是原子O的垂直分布。如果对于这些过程在理论或模拟中没有准确的认识,那么必然造成理论与观测的偏差。3.利用地基OH转动温度与卫星观测比较研究北京地区上空温度的季节性变化。我们利用2012-2013年两年的OH(6-2)带观测计算的转动温度,研究了中国北京地区上空中层顶区域温度的季节性变化、年变化,并与SABER观测的温度进行了比较。两者平均温度分别为196.8 K±13.1和196.3 K±11.9。通过两种观测结果比较,OH(6-2)带的转动温度与SABER探测温度一致,两者都存在明显的季节变化,夏季有温度极小值,冬季则有温度极大值。通过谐波分析发现,年振荡是最强的波动,振幅达13.7 K,其次是半年振荡,振幅则只有1.7 K。年振荡和半年振荡的相位分别在12月中旬和3月底。
[Abstract]:Air glow, as one of the important photochemical phenomena in the middle upper atmosphere, is influenced by the meteorological and external solar radiation at the bottom of the atmosphere. The air glow carries important photochemical and dynamic information. The chemical and physical properties of the upper atmosphere are widely used in the study of high upper atmosphere through the observation of air glow. In November 2011, we were in Hebei. A system for atmospheric radiation detection is established by using a grating spectrometer (40.39 N, 117.58 E). The system is composed of a spectrometer, a CCD detector, a former optical system and a control software. The wavelength range of the system is from ~530nm to ~1000nm, and the observation spectrum includes the green line (557.7 nm) and the red line (630 nm), and atomic sodium. The O_2 (0-1) band, the OH 8-3,4-0,5-1,9-4,6-2,7-3,8-4 and the 3-0 band and other important gas radiance spectra. Through the continuous observation of the accumulated data for several years, this paper mainly carried out the following research work: 1. the Einstein coefficient was evaluated by the comparison of the rotation temperature of the OH band with the SABER temperature by the ground observation, and the results were also given. A set of unified optimal Einstein coefficient ratio.OH rotational temperatures for the calculation of the rotational temperature of the OH band is widely used to observe and study the photochemical and dynamic processes of the middle layer. Among them, the Einstein coefficient is an important parameter for calculating the rotational temperature, and the number of the parameters is mainly through the ab initio calculation of quantum mechanics (AB I). Nitio) method is calculated. The Einstein coefficients given by different researchers are very different, and the calculated rotational temperatures are also different. We use the SABER temperature detection on the TIMED satellite and the foundation OH detection to be independent of each other. The calculation of the Einstein coefficient is carried out. The five spectral bands of OH (9-4,8-3,6-2,5-1,3-0) are used. The rotation temperature of the 5 groups of Einstein is compared with the SABER temperature. The results show that the rotation temperature of OH and the SABER temperature have the same time change, and the linear correlation coefficient of both of them is greater than the deviation between the rotational and SABER temperatures calculated by 0.72. with different Einstein, and the temperature of each vibrational energy level. The deviation is evaluated. It can be seen from the results that the rotation temperature calculated by any group of Einstein coefficients has a system deviation. However, the rotation temperature calculated with the Einstein coefficient of Langhoff et al (1986) is the closest to the SABER temperature. In order to get a set of optimal Einstein coefficients for the calculation of the transfer temperature, we use three years. The statistical comparison of the OH observational spectra and the temperature detected by SABER is carried out, and the ratio of the optimal relative Einstein coefficient is given. This set ratio provides a unified standard.2. for the comparison of the OH rotation temperature detection at different locations in the world. The response of the air glow to the atmospheric wave is studied by the O_2 and OH observations of the OH. The fluctuation of gas (including gravity waves, tides and planetary waves) has a significant modulation effect on the air glow radiation. The response of OH, O_2, O and Na to atmospheric fluctuations has long been observed. When the fluctuation passes through the gas layer, the intensity and temperature are disturbed, but the response of the intensity and temperature to the wave motion is different. The intensity relative to the Krassovsky is relative to the intensity. The response of the disturbance to the temperature relative perturbation is described. In this paper, O_2 and OH (6-2) have been used to study the response of ETA to different periodic fluctuations. For fluctuations less than 12 hours, the range of O_2 is about 1 to 10, and increases with the increase of the cycle. The OH (6-2) band is between 1 and 10, and the period does not change obviously. The phase difference is basically less than 0, that is, the temperature disturbance should go ahead of the intensity disturbance. For the planetary wave of more than 2 days, the O_2 is between 10-15, OH (6-2) and 5-11. Two kinds of gas glow is around 0, only the O_2 is slightly greater than 0, and OH (6-2) 0. is found by comparison with the simulation results that the current theory is not yet possible. It is entirely consistent with the observation, because the response of air glow to atmospheric fluctuations is closely related to the radiation generation mechanism, the quenching process and the background atmosphere, especially the vertical distribution of the atomic O. If these processes are not accurately understood in theory or simulation, it will inevitably lead to the use of theoretical and observational deviations of.3.. The OH rotation temperature of the foundation is compared with the satellite observation to study the seasonal variation of temperature over the Beijing area. We have studied the seasonal variation of the temperature in the top area of the air in the Beijing area of China with the rotation temperature calculated by the OH (6-2) band for 2012-2013 years and two years, and compared with the temperature observed by the SABER. The temperature is 196.8 K + 13.1 and 196.3 K + 11.9. respectively through two observation results. The rotation temperature of OH (6-2) band is in accordance with the SABER detection temperature. Both of them have obvious seasonal changes. In summer there is a temperature minimum, and in winter there is a maximum temperature. It is found that the annual oscillation is the strongest fluctuation, the amplitude is 13.7 K, followed by half. The annual oscillation is only 1.7 K. annual oscillation and half yearly oscillation phase in mid December and the end of March respectively.
【学位授予单位】:中国科学院国家空间科学中心
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P412.2

【参考文献】

相关期刊论文 前6条

1 刘伟军;徐寄遥;袁椺;;北京地区上空OH转动温度的季节性变化[J];地球物理学报;2015年05期

2 王翠梅;李钦增;徐寄遥;袁椺;刘伟军;孙龙昌;陈金松;燕春晓;;基于OH全天空气辉成像仪观测的中国低纬地区的重力波传播统计特征[J];地球物理学报;2014年11期

3 ;First experiment of spectrometric observation of hydroxyl emission and rotational temperature in the mesopause in China[J];Science China(Technological Sciences);2012年05期

4 ;Seasonal variations of night mesopause temperature in Beijing observed by SATI4[J];Science China(Technological Sciences);2012年05期

5 王咏梅,徐寄遥,王英鉴,刘振兴;重力波诱导OH气辉分布的变化[J];地球物理学报;2004年01期

6 王咏梅;王英鉴;;OH气辉对重力波响应的模式研究[J];地球物理学报;1998年04期

相关博士学位论文 前2条

1 高红;中高层大气气辉辐射研究[D];中国科学院研究生院(空间科学与应用研究中心);2008年

2 姜国英;中间层—低热层大气中的行星波研究[D];中国科学院研究生院(武汉物理与数学研究所);2007年



本文编号:2006004

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2006004.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e5b36***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com