凝灰质储层测井评价方法研究
本文选题:凝灰质储层 + 测井响应差异 ; 参考:《吉林大学》2016年博士论文
【摘要】:随着人们对油气资源需求的日益增加和油气勘探开发的不断深入,复杂油气藏已经成为研究热点。其中,火山岩碎屑岩与火山碎屑沉积岩等储层评价受到广泛关注,但研究程度仍然不够深入。该类储层在本文中称为凝灰质储层,由于普遍含有凝灰质等火山碎屑物质,和正常的泥质砂岩储层相比,不仅物源多样、矿物成分复杂、非均质性强而且成岩过程更为复杂,使得储层孔隙结构复杂。尤其是凝灰质和泥质在许多性质上具有相似性,导致了区分的难度,因此凝灰质储层测井评价一直是一个难题。本文通过凝灰质储层中泥质和凝灰质的测井响应特征分析,建立了凝灰质储层的体积模型和导电模型。并利用多种方法求解饱和度、评价含油性,为这类储层的测井评价提供了一定依据,对凝灰质储层的勘探、开发具有重要意义。论文研究的内容主要有以下几个方面:综合利用常规测井曲线结合电成像测井和ECS等测井资料识别火山岩、火山碎屑岩、火山碎屑沉积岩和沉火山碎屑岩等岩性。理论分析结合岩心实验数据,得到了泥质与凝灰质在放射性元素含量、密度等测井响应上的差异,进而建立了考虑泥质和凝灰质的储层体积模型。利用ECS资料获得了随深度变化的骨架密度和骨架中子,解决了成分复杂的储层孔隙度的计算,并利用粒子群和细菌觅食的混合优化算法计算凝灰质和泥质含量。利用CEC实验数据,分析了泥质和凝灰质的导电性差异。继而借用W-S模型的思想推导并得到了CEC与电阻率之间的关系,将这种转换关系应用到饱和度计算中。将W-S模型进行改进,将其推广到凝灰质储层的饱和度评价中,并取得了良好的应用效果。利用常规测井资料建立了流体识别图版并结合SVM分类算法进行储层流体识别,建立了一套适合凝灰质储层的测井评价方法。论文的有以下几个创新点:1、论证了泥质与凝灰质的测井响应差异。2、基于粒度对凝灰质放射性元素含量的影响,建立了含粗、细凝灰质的凝灰质储层的体积模型。3、利用粒子群和细菌觅食的混合优化算法,计算泥质和凝灰质含量。4、基于W-S模型的思想推导了CEC与电阻率的关系,并将这种转换关系应用到饱和度计算中。5、在W-S模型的基础上得到了计算凝灰质储层的含水饱和度的方法,并取得了良好的应用效果应用前景:本文通过论证泥质和凝灰质的测井响应差异,解决了两者难以区分的问题;提出了利用CEC比值计算储层饱和度的方法以及没有CEC实验资料时的基于W-S模型的饱和度计算方法。解决了岩性识别、储层参数计算和含油性评价等难题,对凝灰质储层的勘探、开发提供了参考价值,经济意义较为明显。
[Abstract]:With the increasing demand for oil and gas resources and the deepening of oil and gas exploration and development, complex oil and gas reservoirs have become a research hotspot. Among them, the evaluation of volcanic clastic rock and pyroclastic sedimentary rock has received extensive attention, but the degree of research is still not deep enough. This kind of reservoir is called tuffaceous reservoir in this paper. Because of the common volcanic clastic material such as tuff, compared with normal argillaceous sandstone reservoir, this kind of reservoir is not only rich in material source, complex in mineral composition, strong in heterogeneity, but also more complicated in diagenetic process. The pore structure of the reservoir is complicated. In particular, many properties of tuff and mud are similar, which leads to the difficulty of distinguishing. Therefore, logging evaluation of tuff reservoir is always a difficult problem. In this paper, the volume model and conductive model of tuff reservoir are established by analyzing the logging response characteristics of the clay and tuff in the tuff reservoir. Several methods are used to calculate saturation and evaluate oil content, which provides a certain basis for logging evaluation of this kind of reservoir, and is of great significance for exploration and development of tuff reservoir. The main contents of this paper are as follows: the lithology of volcanic rocks, pyroclastic sedimentary rocks and sedimentary pyroclastic rocks are identified by using conventional logging curves combined with electrical imaging logging and ECS logging data. Based on the theoretical analysis and core experimental data, the difference of log responses between mud and tuff in terms of radioactive element content and density is obtained, and a reservoir volume model considering mud and tuff is established. By using ECS data, the skeleton density and skeleton neutron varying with depth are obtained, and the calculation of reservoir porosity with complex composition is solved, and the content of tuff and mud is calculated by the hybrid optimization algorithm of particle swarm and bacterial foraging. The difference of electrical conductivity between clay and tuff is analyzed by using CEC experimental data. Then, the relationship between CEC and resistivity is derived by using W-S model, and the transformation relation is applied to saturation calculation. The W-S model has been improved and extended to the evaluation of tuff reservoir saturation, and good results have been obtained. Based on the conventional logging data, the fluid identification chart is established and the SVM classification algorithm is used to identify the reservoir fluid. A set of logging evaluation methods suitable for the tuff reservoir are established. This paper has the following innovations: 1, proves the difference of logging response between mud and tuff. Based on the effect of particle size on the content of radioactive elements in tuff, the coarse content is established. The volume model of tuffaceous reservoir of fine tuff. 3, using the mixed optimization algorithm of particle swarm and bacteria foraging, calculates the content of clay and tuff. Based on W-S model, the relationship between CEC and resistivity is deduced. The transformation relation is applied to saturation calculation. On the basis of W-S model, the method of calculating water saturation of tuff reservoir is obtained. And has obtained the good application effect application prospect: this article through the demonstration mud and the tuff logging response difference, has solved the two difficult to distinguish the question; The calculation method of reservoir saturation using CEC ratio and the saturation calculation method based on W-S model without CEC experimental data are put forward. The problems of lithology identification, reservoir parameter calculation and oil-bearing evaluation are solved, which provides a reference value for the exploration and development of tuff reservoir, and the economic significance is obvious.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P618.13;P631.81
【参考文献】
相关期刊论文 前10条
1 潘保芝;刘思慧;黄布宙;房春慧;郭宇航;;CEC比值法在凝灰质砂岩储层测井评价中的应用——以海-塔盆地X凹陷凝灰质砂岩储层为例[J];地球物理学报;2016年05期
2 潘保芝;段亚男;张海涛;杨小明;韩雪;;BFA-CM最优化测井解释方法[J];地球物理学报;2016年01期
3 潘保芝;石玉江;蒋必辞;刘丹;张海涛;郭宇航;杨小明;;致密砂岩气层压裂产能及等级预测方法[J];吉林大学学报(地球科学版);2015年02期
4 蒋必辞;潘保芝;庄华;张海涛;杨小明;陈刚;;改进GRNN网络预测致密砂岩气层压裂产能[J];世界地质;2014年02期
5 刘思慧;潘保芝;黄布宙;李丁;;火山碎屑沉积岩储层评价方法综述[J];地球物理学进展;2014年02期
6 尤梦丽;雷秀娟;;改进的细菌觅食算法求解TSP问题[J];广西大学学报(自然科学版);2013年06期
7 魏颖;李文厚;郝松立;郭懿萱;李国红;;鄂尔多斯盆地子洲气田北部盒8段储层特征研究[J];长江大学学报(自科版);2013年20期
8 赵春丽;刘清;;基于微粒群策略的自适应觅食算法研究[J];南京师范大学学报(工程技术版);2013年01期
9 刘财;卢勇旭;冯fE;刘宇巍;鹿琪;;团体粒子群与最大能量串行融合算法转换波静校正[J];地球物理学报;2013年01期
10 陈东虎;朱维耀;朱华银;雷刚;刘军;;应用广义回归神经网络预测油井含水率[J];重庆科技学院学报(自然科学版);2012年06期
相关博士学位论文 前10条
1 许石;辽河盆地东部凹陷火成岩储层特征及非均质性研究[D];吉林大学;2015年
2 徐慧;粒子群优化算法改进及其在煤层气产能预测中的应用研究[D];中国矿业大学;2013年
3 郭欣欣;火山碎屑岩储层的岩石学特征与储层评价[D];吉林大学;2013年
4 于振锋;海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应[D];吉林大学;2013年
5 董林森;CO_2-火山碎屑岩相互作用的特征与机理[D];吉林大学;2011年
6 李军辉;呼和湖凹陷白垩系层序地层及油气成藏特征研究[D];东北石油大学;2010年
7 常甜甜;支持向量机学习算法若干问题的研究[D];西安电子科技大学;2010年
8 张丽华;火成岩储层测井评价方法研究[D];吉林大学;2009年
9 刘福利;哈萨克斯坦油田复杂储层饱和度计算方法研究[D];中国地质大学(北京);2008年
10 冯庆付;大庆徐家围子地区深层火成岩气藏测井解释方法研究[D];中国海洋大学;2007年
,本文编号:2031655
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2031655.html