FGF13影响小鼠骨骼肌增殖与分化的机制研究
本文选题:FGF13 + 细胞增殖 ; 参考:《西北农林科技大学》2016年博士论文
【摘要】:骨骼肌在机体中主要执行收缩和舒张功能,参与完成各种运动。在畜禽类的研究中,骨骼肌的数量和质量被作为衡量畜禽肉品质的主要指标。骨骼肌生长发育是一个相当复杂的过程,包括肌源干细胞分化成单核的成肌细胞、融合形成多核肌管、成熟肌纤维等过程,在这些过程中涉及多个成肌因子的调控。尽管小鼠骨骼肌生长发育的过程研究已较为清楚,但参与调控肌生成的因子还有待进一步的挖掘。FGF13属于FGF亚家族(FHF)的成员,其结构特点是N端不具有自身的信号分泌序列,不能分泌到胞外,作为胞内蛋白发挥作用。FGF13在脑和神经组织中高表达,但有研究发现小鼠腿肌中FGF13基因的表达要比眼外肌高;在培养的单根肌纤维中,检测到FGF13也有较高的表达;在人类的BFLS症中FGF13在病人的脑和骨骼肌中均高表达,因此,我们推测FGF13在骨骼肌生长发育中发挥一定的作用。为验证FGF13在肌肉发育中的作用,首先我们检测FGF13在小鼠各组织器官中特异性表达,并检测FGF13在C2C12成肌细胞增殖和分化过程中的时序表达;构建FGF13的si RNA和超表达载体,分别转染C2C12细胞,采用Real-time qPCR、Western blotting、流式细胞术和免疫荧光染色等细胞分子生物学手段,从细胞形态、mRNA和蛋白水平检测FGF13对C2C12成肌细胞的增殖、分化、肌管的融合以及相关信号通路调控等方面的影响,初步确定FGF13参与肌肉细胞增殖和分化过程。其次,我们构建小鼠的骨骼肌损伤模型,并在肌肉的局部组织注射FGF13的siRNA,采用冰冻切片和组织免疫荧光技术检测肌肉损伤后的修复情况。最后,构建FGF13诱饵重组载体,采用酵母双杂交系统从小鼠的cDNA文库中筛选与FGF13互作的蛋白质,为进一步探索FGF13影响骨骼肌生长发育的信号转导通路提供新线索。获得研究结果如下:1.FGF13基因在脑组织中表达量最高,肌肉、心脏和肺脏等组织处于中等表达水平;在C2C12成肌细胞增殖和分化过程中,发现FGF13在分化第4d表达量达到最高,然后逐渐下降;用si-FGF13转染C2C12成肌细胞后,MyOG和MyHC的表达水平显著增加,肌管形成增多;反之,超表达后,MyOG和MyHC的表达水平显著降低。因此,FGF13抑制C2C12成肌细胞的分化和肌管形成。2.通过在C2C12成肌细胞中超表达FGF13和采用信号通路抑制剂处理的方法,发现超表达FGF13后ERK1/2的磷酸化水平有所提高,ERK1/2信号通路的激活会抑制早期成肌分化;3.Spry1是ERK1/2信号通路的抑制因子,当干扰Spry1的表达,成肌分化能力增强;采用siRNA双敲除方法,发现FGF13通过抑制Spry1的表达而促进ERK1/2磷酸化水平的提高,从而激活ERK1/2信号通路,抑制成肌分化。4.FGF13通过抑制Spry1基因表达使p27基因的表达水平升高,进一步抑制CyclinE蛋白表达水平,最终导致细胞增殖减慢,但并没有影响ERK1/2的磷酸化水平;细胞划痕实验表明,超表达FGF13能够显著抑制C2C12细胞迁移;另一方面,采用BaCl2注射方法损伤骨骼肌,构建肌肉组织损伤模型;注射siFGF13后,局部损伤组织的炎症细胞数量有所减少,成肌相关基因MyOG表达显著增加,表明FGF13在肌肉损伤后的修复过程中发挥负调控的作用。5.构建pGBKT7-mFGF13诱饵蛋白的表达载体,进行酵母双杂交实验,筛选到9个与FGF13相互作用的蛋白质,其中Shcbp1、ARHGAP5可能与FGF13相互结合影响ERK1/2和P38信号通路,从而调节骨骼肌的生长发育过程,但具体的结合形式及功能还需进一步验证。综上所述,FGF13通过下调Spry1的表达,激活ERK1/2信号通路从而抑制C2C12成肌细胞的分化。因此,在成肌分化中FGF13是一个抑制因子。在C2C12成肌细胞的增殖过程中,FGF13也是通过下调Spry1的表达而促进p27基因的表达水平升高,进一步使CyclinE蛋白表达减少,最终导致细胞增殖速度减慢,但ERK1/2信号通路并没有受到影响。运用酵母双杂交系统筛选出9个可能与FGF13相互作用的蛋白质,参与细胞增殖和分化、迁移和运动、自噬、自身免疫以及能量代谢等过程,但具体的功能还需进一步验证。
[Abstract]:Skeletal muscles mainly perform contractile and diastolic functions in the body and participate in various movements. In the study of livestock and poultry, the quantity and quality of skeletal muscles are the main indicators to measure the quality of livestock and poultry meat. The growth and development of skeletal muscles is a rather complicated process, including myogenic stem cells differentiated into mononuclear myoblasts and fusion formation. Nuclear myotubes, mature muscle fibers, and other processes involved in the regulation of several myogenic factors in these processes. Although the study of the growth and development of skeletal muscles in mice is clear, the factors involved in the regulation of muscle generation still need to be further excavated by.FGF13 members of the FGF subfamily (FHF), whose structural characteristics are that the N end does not have their own signal points. The secreting sequences can not be secreted to the extracellular, as intracellular proteins play a role in the expression of.FGF13 in the brain and nerve tissue, but some studies have found that the expression of FGF13 gene in the leg muscles of mice is higher than that of the extraocular muscles; in the single muscle fibers of the culture, the expression of FGF13 is also higher; in human BFLS disease, FGF13 is in the brain and skeletal muscles of the patients. Therefore, we speculate that FGF13 plays a role in the growth and development of skeletal muscle. In order to verify the role of FGF13 in the development of muscle, we first detect the specific expression of FGF13 in various tissues and organs of mice, and detect the time sequence expression of FGF13 in the proliferation and differentiation of C2C12 myoblasts, and construct the Si RNA and overwatch of FGF13. C2C12 cells were transfected, and Real-time qPCR, Western blotting, flow cytometry and immunofluorescence staining were used to determine the effects of FGF13 on the proliferation, differentiation, fusion of myotubes and the regulation of related signal pathways from the cell morphology, mRNA and protein levels, and the preliminary determination of F GF13 participates in the process of proliferation and differentiation of muscle cells. Secondly, we construct a mouse skeletal muscle damage model, and injecting FGF13 siRNA in the local tissue of the muscles, using frozen section and tissue immunofluorescence to detect the repair of muscle injury. Finally, the recombinant vector of FGF13 decoy was constructed and the yeast two hybrid system was used to form a yeast two hybrid system from mice. CDNA library screening and FGF13 interaction proteins provide new clues for further exploring the signal transduction pathway that FGF13 affects the growth and development of skeletal muscle. The results are as follows: the highest expression of 1.FGF13 gene in the brain tissue, muscle, heart and lung tissues at the middle expression level; the proliferation and differentiation process of C2C12 myoblast cells. It was found that the expression of FGF13 reached the highest level in the differentiation 4D, and then decreased gradually; after transfecting C2C12 into myoblasts with si-FGF13, the expression level of MyOG and MyHC increased significantly and the myotube formation increased; on the contrary, the expression level of MyOG and MyHC decreased significantly after overexpression. Therefore, FGF13 inhibited the differentiation of C2C12 myoblasts and the formation of myotube formation.2. through C2C 12 the overexpression of FGF13 in myoblasts and the method of signal pathway inhibitor treatment, it was found that the phosphorylation level of ERK1/2 increased after overexpression of FGF13, and the activation of ERK1/2 signaling pathway inhibited the early myogenic differentiation; 3.Spry1 was a inhibitory factor of ERK1/2 signaling pathway, and when the expression of Spry1 was disturbed, the ability of myogenic differentiation was enhanced; siRNA double was used. It was found that FGF13 promoted the level of phosphorylation of ERK1/2 by inhibiting the expression of Spry1, thus activating the ERK1/2 signaling pathway, inhibiting the differentiation of myogenic differentiation.4.FGF13 by inhibiting the expression of Spry1 gene to increase the expression level of the p27 gene, further inhibiting the level of the expression of CyclinE protein, and eventually causing cell proliferation and slowing down, but there is no shadow. The level of phosphorylation of ERK1/2, cell scratch test showed that overexpression of FGF13 could significantly inhibit the migration of C2C12 cells; on the other hand, BaCl2 injections were used to damage skeletal muscle and to construct a muscle tissue damage model. After siFGF13 injection, the number of inflammatory cells in local injured tissues decreased and the expression of MyOG related genes increased significantly. FGF13 plays a negative regulatory role in the repair of muscle injury after muscle damage,.5. constructs the expression vector of pGBKT7-mFGF13 decoy protein, and carries out yeast two hybrid experiment to screen 9 proteins interacting with FGF13, in which Shcbp1 and ARHGAP5 may interact with FGF13 to influence ERK1/2 and P38 signaling pathways, thus regulating the growth of skeletal muscle. Development, but specific binding forms and functions need further validation. To sum up, FGF13 can inhibit the differentiation of C2C12 myoblasts by downregulating the expression of Spry1 and activating the ERK1/2 signaling pathway. Therefore, FGF13 is an inhibitory factor in the myoblast differentiation. In the proliferation of C2C12 myoblasts, FGF13 is also through the reduction of Spry1. The expression increased the expression level of the p27 gene, further reduced the expression of CyclinE protein and eventually led to the slow growth of cell proliferation, but the ERK1/2 signaling pathway was not affected. The yeast two hybrid system was used to screen 9 proteins that might interact with the FGF13, and to participate in cell proliferation and differentiation, migration and movement, autophagy, and autophagy. However, specific functions need further verification.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q44
【相似文献】
相关期刊论文 前10条
1 白文涛,张芳琳,吴兴安,于澜,史梦远,胡刚,王海涛,徐志凯;β3整合素酵母双杂交载体的构建及鉴定[J];西安文理学院学报(自然科学版);2005年02期
2 秦少溥;;酵母双杂交及其衍生系统[J];生物学通报;2009年12期
3 胡承香,徐祥,梁华平,王付龙,罗艳,王正国;酵母双杂交随机肽库的设计及构建[J];动物医学进展;2003年02期
4 徐文琳,廖志勇,王春丽,余利红,王新兴,尹昭云,张成岗,钱令嘉;酵母双杂交相关方法的改良及应用[J];生物技术通讯;2003年05期
5 李剑;饶凯锋;马梅;王子健;;核受体超家族及其酵母双杂交检测技术[J];生态毒理学报;2008年06期
6 段强德;陈铁桥;;酵母双杂交体系的原理及研究进展[J];畜牧兽医杂志;2009年01期
7 黄欣媛;范红波;;酵母双杂交及其衍生系统[J];生物技术通报;2014年01期
8 罗星;张峪涵;于娜;孔雪;徐坚;顾少华;杨磊;黄瑾;;神经突起因子酵母双杂交诱饵质粒构建和转化[J];中国公共卫生;2006年04期
9 郜尽;王海侠;李京敬;俞雁;;酵母双杂交报告基因β-半乳糖苷酶活性测定方法的研究[J];上海交通大学学报(医学版);2009年02期
10 谢超;王方圆;袁运生;郜尽;朱润芝;韩伟;俞雁;;酵母双杂交研究小鼠肝脏再生TGF-β调控通路中相关转录因子的相互作用[J];上海交通大学学报(医学版);2011年05期
相关会议论文 前5条
1 李彦姝;;酵母双杂交顺转法筛选相互作用蛋白质[A];中国细胞生物学学会第九次会员代表大会暨青年学术大会论文摘要集[C];2007年
2 李彦姝;;PAK4相互作用蛋白质筛选[A];中国细胞生物学学会第九次会员代表大会暨青年学术大会论文摘要集[C];2007年
3 李晔;李兆蕾;尚梅;吴银娟;毛强;黄艳;贾飞飞;简煜;李妍;单士超;余新炳;李学荣;;酵母双杂交系统筛选人肝脏cDNA文库中与肝吸虫PLA2相互作用蛋白的基因序列[A];2013年全国寄生虫学与热带医学学术研讨会论文集[C];2013年
4 贾思远;罗向东;齐洁;;酵母双杂交证实Id1'与AGGF1存在相互作用[A];第八届全国烧伤外科学年会论文汇编[C];2007年
5 张旭东;Rhonda R.McCartney;Tommy S.Tillman;Harry Solimeo;Stefan Wf;Ciprian Almonte;Simon C.Watkins;Martin C.Schmidt;;Stdl蛋白对葡萄糖感受体Rgt2和Snf3的作用及对蛋白激酶Snf1活性的调节(英文)[A];生命科学与生物技术:中国科协第三届青年学术年会论文集[C];1998年
相关博士学位论文 前10条
1 张晓艳;与幽门螺杆菌CagA相互作用的胃黏膜蛋白筛选及二者相互作用的功能研究[D];福建医科大学;2014年
2 王云;KZNF家族分子ZNF496功能与机制的研究[D];山东农业大学;2015年
3 路宏朝;FGF13影响小鼠骨骼肌增殖与分化的机制研究[D];西北农林科技大学;2016年
4 张勇;神经营养因子受体下游信号转导通路的酵母双杂交研究[D];第二军医大学;2002年
5 鲁宁;应用酵母双杂交和酵母三杂交系统研究G蛋白信号传导通路中的相关蛋白因子[D];中国协和医科大学;2002年
6 朱君俏;血管生成素与磷脂混杂酶1相互作用及其功能研究[D];浙江大学;2009年
7 叶晓霞;人类新基因pp5644的功能研究以及酵母双杂交载体的改造与文库构建[D];复旦大学;2006年
8 车红磊;NDRG2(371)相互作用分子筛选[D];第四军医大学;2008年
9 沈煜;子宫颈部位输卵管蛋白表达和功能的初步研究及其在毕赤酵母的重组表达及纯化[D];复旦大学;2004年
10 郭芬;小鼠Rhox5蛋白与鞘脂激活蛋白原功能性相互作用的研究[D];暨南大学;2007年
相关硕士学位论文 前10条
1 单兴娜;猪札幌病毒主要非结构蛋白的表达及VP2互作分子的筛选[D];中国农业科学院;2015年
2 王静;莲藕酵母双杂交cDNA文库及PPO基因诱饵载体构建[D];西北农林科技大学;2015年
3 杨立敏;酵母双杂交鉴定TCTP与Rheb相互作用关系并验证其功能[D];内蒙古大学;2015年
4 郭蓉;丹参PPO基因酵母双杂交诱饵质粒与cDNA文库构建[D];西北农林科技大学;2015年
5 任洪;猪传染性胸膜肺炎放线杆菌(APP)三聚体自转运粘附素肺组织互作蛋白筛选研究[D];四川农业大学;2015年
6 张晖;2013年新发生的番茄黄化曲叶病DNA-A组分分析及TYLCV编码的C4蛋白与番茄互作因子筛选[D];南京农业大学;2014年
7 刘彦芳;小麦凝集素TaJRL2.1互作蛋白的验证及其表达分析[D];南京农业大学;2014年
8 朝鲁蒙;大鼠睾丸酵母双杂交cDNA文库的构建及与JUNO相互作用蛋白的初步筛选[D];内蒙古大学;2016年
9 刘旭旭;番茄SYTA克隆表达及番茄SYTA互作蛋白筛选[D];西南大学;2016年
10 刘爱丽;采用酵母双杂交技术筛选热激反应相关剪接因子的互作蛋白[D];华中师范大学;2016年
,本文编号:2053065
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2053065.html